CHAPTER FOUR
SHORT MEMORY-ANNUAL FLOW MODELS

Several inhérent inadequacies associated with using only a
historical sequence in design. Engineers and hydrologists utilize
long synthetic sequences which resemble the observed historical
record. Even though at present serveral models exist for data
generat.ion, Markov and ARMA models have been used widely because of
their simplicity. They preserve the low-order moments well but fail
to generate events more extreme than those observed in the
historical record. Another criticism levelled againt. Markov models
is their failure to preserve the long-term persistence features
observed in the historical sequences. Nevertheless, because of the
complexity and excessive computer time involved in operating other
models <(such as fractional Gaussian noise processes and Broken Line
processes, described in the next chapter.), which preserves the
long~-term persistence effect, Markov and ARMA models are being used
extensively for data generation. The aim of this chapter is to
compare synthetic sequences abtained from Markov and ARMA models

using various generation procedures and some modifications.
4.1 MARKOV MODEL

Markov or autoregressive (AR) models essentially relates the
present performance, X,» of a system to that which occurred at some
time, or set of ﬂimes, in the immediate past and also to a random

component, €,- An AR model of order p can be witten as

Z, =0 Z +0.Z 4+ ... 40 Z €, e, (4.1.1)

4 1 +t—1 2 -2 P tee +

&
I

(xt—i)/s ........ (4.1.1a)
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X=wmwmzx, ... (4.1.1b)
t=1
N
s = [/N-DE X -0V L (4.1.1c)
=1

Where ¢ , i=1,2,3,...,p, X and s are the autoregressive
parameters or weights, mean and standard diviation respect.ively.

The properties of Z, and €  are defined by

E[Z,1 = Ele,1 =0
. 2 _ z
varlz,1 = E(Z, 1 = o_ |
varfe 1 = Efe. 1 =06 - (4.1.2)
+ + -
P, = B(z,2,_ /0" for k=1, 2, 3,...
Ele,.e, 1 =ECle .Z __1=0

The last equality merely signifies that the current random
nueber is independent of past values of the process. As in previous
notation, E denotes the expected or mean value of the f.erm within
the parentheses and the 'variance is ahbreviated to var.

' Henceforth it is assumed without loss of generality that the
variance of the stochastic component is equal to one. This means
that, in application, the numbers generated through such eguations
as Eq.(4.1.1) should be multiplied by the standard deviation of the
variable modelled and the mean should then be added to each number.
These and other model parameters are estimated from observed

sequences.

L

4.1.1 Estimation of Autoregressive Parameters

If Eq.(4.1.1} _is multiplied by Z,_, and expectation are taken,
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E(ZZ ) =8 EZ 7 J+@ LE(Z )+0_E(Z )

ot —1 1 t—1"t—1 1'.2.1’.1 bat—i

‘oo HOE(Z_Z O4E(€,Z ) ........ (4.1.3)

+

Because E(Etztﬁl) = 0 and on account of the other properties
given above, it follow that

Py =@ 48P 40 0+ ... + O P ........... (4.1.4)

P Pl

Furthermore, if Eq.(4.1.1) is multipiied by 2 Z A

t-2?Te_n®* " t e

in turn and if expectations are taken after each multiplication, p
relationships called the Yule-Walker equations are obtained. These

can be represented in matrix form by

( p1\ 1 1 Py P pp,; f Q1 ‘
P, P, 1 P, eeeaes P s ¢,
P, R T P s T
. = . . . . . (4.1.5)
P, P, Po_s Pog vmvees 1 ¢,

~ /s . ,.J . J

or briefly

=P8 e (4.1.5a)
» P R

A necessary condition for stationarity is  that the
aut.ocorrelat.ion matrix P; is positive definite, that is, the
determinant and all its principal minors are more than =zero.

Therefore,
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In order to solve Eq.(4.1.5), autocorrelation coefficients r,
r,»...,r_ are substituted in P and Ps and hence the Yule-Walker
estimates pf the autoregressive parameters ¢ ,0,,..-,0_ are obtained.

By squaring both sides of Eg. (4.1.1) and taking expectations
it follows that, because each of the expected values Ete .2, _,)s

E(e .2, )y .- » E(e_.Z _ ) are equal to zero

t—2

2
1=0,p +@,P, + 8P, + ... + 8P +0, ..oo... (4.1.7)

Hence, dez which is the variance of the independent variables et'is

give by
2
o = 1 - @191 3 @zpz - @spa - aes - Qppp ..... (4.1.8)
or \
s =1 L. (4.1.8a)
where
. :
R =@,P, +0,P, + 0P, + .. +8 P ....... (4.1.8D)

is called the coefficient of determinatiﬁn or the square of the

multiple correlation coefficient

4.1.1.1 First-Order Model, AR(1)

The first-order autoregressive model AR(1) is known familiarly

as a Markov model. It is given by
Z, =02, b€, eeeereeieeeaen. (4.1.9)

if this equation is multiplied throughout by Z and if

+—1

expectations are taken, because E{e Z _ ) = 0 in addition to the
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assumpt.ions E(Zt’)a = 1 and E(Z, ) = 0, it follows that

O, =P, e (4.1.10)

where P, is the lag-one autocorrelation coefficient and -1<p <1,
Also from Eq. (4.1.8) the variance of the independent variables ¢ N

is given by

og° =1- 2.5 7 A0 .. 6., (4.1.11)

Again, if Eq.(4.1.9) is multiplied in turn by Z, > Zt_z, 2 e
and Z Z Z

t+1? “eip? “gap? v

' |
b, =0l k=o0,41,%2,03 ... (4.1.12)

4.1.1.2 Second—Order Model, AR(2)

Second order is usually the highest lag necessary in

representing hydrologic time series. The model takes the .f orm

Z =627 + 0 72 30— Y S W €4.1.13)

t I w—1 274 -2 +

The stationary constraints on & . and ®¢, are determined as follows:

o, +8 <1
¢, -6 <1 R IIREE (4.1.14)
-1 <9, <1

Fig.(4.1) shows the triangular parameter space defined by Eq.
(4.1.14). The Yule-Walker equations for the AR(2) nmodel are

©
It

¢1. + Qapl
&P, +0, .. (4.1.15)

el
It
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which when solved simultanecusly yield

L= ]
]

P (1-p,)/(1-p_ ")
: (pz-plz)/(l—plz) ............ (4.1.18)

=]
It

or inversly P,

@1/(1—62)

2 .
p ¢, + @ /(1—@2) ............ (4.1.17)

z
Fig.(4.2) gives the solution of Eq. (4.1.16) for various values of
correlation coefficients P, and P,. In parctice, sample estimates
could be used for the correlation in order to obtain parameter
values.

The parameter limits given in Eq. (4.1.14) and the relations
between correlations and parameter, given in Eq. (4.1.1?) define a
region of wvalid correlation coefficients for the lag-two

autoregressive model

~1<p, <1
~1<p, <1 N N W S S S . (4.1.18)
p %< 1/2tpz+1)

1

The admissible regions of parameters and correlations are
shown in Fig.(4.1), Notice that this figure could be used as a first
—cut. criteria for the possible use of an AR(2) with a given set of
data. '

4.1.2 Application of qukov Model

4.1.2.1 Lag One Markov Model

The lag one Markov model is def ined as
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Figure 4.1 Valid regions of the parameters and correlations

- - of a stationary AR(2) process (from Box and Jenkins, 1976)
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Figure 4.2 Relation between correlations and parameters of

an AR(2) model. Diagram may be used for parameter estimation

using the method of moments. (From Box and Jenkins, 1976.)
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Z 1rs2
Z,=PZ_ +1-p) e, il (4.1.19)
where zZ, = flow at time t standardised to have zero mean and

unit. variance

lag one autocorrelation coefficient., and

-
I}

M
I}

independent. and identifically distributed random
numbers having zero mean and unit variance.
If one is interested in generating normally distributed flows,

Eg.(4.1.19) can be used with €, sampled from a normal distribution.

4.1.2.2 Modifications to Account for the Skewness

Skewed flows can be generated by modifying €, in Eq.(4.1.19)
There are several ways to do this as discussed in the following

sect.ions.
a) Wilson-Hilferty Transformation

To account for skewness, Thomas and Fiering (1962) replaced
the random component €, by using the Wilson - Hilferty

transformation as follows:

£, = Z/Y(E)[l«w(i)etlﬁ—w(E)Z/SGJS—ZIY(E) .......... (4.1.20

where the skewness of g, denoted by v(%) is related to the skewness

of X dencted as v, by

3 | z 3rz
YE) = (1-pH/a-pH Ty L. (4.1.21)

If €, is assumed to be normally distributed with zero mean and
unit.  variance, then £, 1is approximately distributed as Gamma with

zero mean, unit variance and skewness v(X). With £, as the random
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component, the lag one Markov process may be used to generate
synthetic events that will resemble the historic events in terms of

the first three moment and lag one autocorrelation coefficient.
b) Kirby’s Modification

McMahon and Miller (1971) showed this transformation breaks
down for skewness larger than 2. However, Kirby (1972) provided a
modified Wilson-Hilferty transformation which theoretically remains
satisf actory over the whole rang of hydroclogic interest. Kirby’s

modification is as follow:

€, = Almax(E,14Ge /6-(G/6) 1 -B} ........... (4.1.22)

t

where

73

B-2/(vEIAN T (4.1.23)

H

E

and A, Band G are given by Kirby (1972) in terms of

skewness.
¢) Logarithmic Transformation

Synthetic flows which conform to a three parameter log-nomal
distribution and which resemble historical flow in terms of lower
order moments and serial correlation may be generated as follows
{Matalas, 196T7h).

If A is assumed to be the lower bound of the. variate X, where
(X,-A) is log normally distributed, then Y, = In(X,-A) is normally
distributed. The mean u_ , varisnce o_°, skewness v_, and the lag
one autocorrelation P, of the historical data (X,) are related to
the lower bound A, mean U, variance qyz and lag one

autocorrelation coefficient, P, of Y by
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u, sA+emu +0 /2 ... (4.1.24)
2 2 s =2
6. = exp{Z(uy + oy )y -~ exp{Zuy + dy A (4.1.25)
2 =z 2 3752
v, = {exp(36,°) - 3exp(s, ") + 2}/{exp(o, ) -1} (4.1.26)
p, = (exp(c “p) - D/(exp6,”) - 1 ieeeann.. (4.1.27)

To solve for A, . o and P, one begins with Eg. (4.1.26)
solves for - Since this is not explicit in G, an iterative
solution such as Newton—-Raphson method is required. Once o, is
comput.ed, U, P and A can be obtained from Eq. (4.1.24), (4.1.25)
and (4,1.27)

An alternative method for determining the parameters is
developed by Fiering and Jackson (1971). The method propose a
slowly converging iterative solution for the y parameters of the
system of Eq. (4.1.24), (4.1.25), (4.1.26) and (4.1.27), but a
difect solution is possible by making the substitution

o = explo,”) u 4> fereeeenee  (4.1.28)
Eq. (4.1.26) becomes
v_ = @°-30+2)/8-1"7" = -1 %2y ... (4.1.29)

When & = 1 . This last equation shows why the three-parameter log
normal model is applicable only to distributions with positive
coefficient of skewness: sincé by definition, ¢ is always greater
than or equal to 1, the right-hand side is always greater than
zero. (The case of & = 1 is excluded, since it implies that v..= 0,
and the solution is symmetrical about the mean.) After squaring Y,

= (G—l)lfz(ﬁ+2), one can obtain

3 2 2
® +3¢ - 44y ) =0 | eessessncaceas (4.1.30)
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For ¥_ > 0, Fq.(4.1.30) has only one real root, given by
Abramowitzand and Stegun (1972, Eq. 3.8.2) as

g = [(1+vx2/2)+(vxz+vxz/4>"231’3

Loy 72— “wv 5/ 234 oy L. (4.1.3D)

The y statics are easily found to be

o, =log® ..., (4.1.32)
M, = (/2)og [6_ /(@ —®)T eerrrirannnn.. (4.1.33)
A =u -Co 70375 L cee (4.1.38)
P = floglp_(@-1+113/log &  ..... U B . (4.1.35)

In Eq.(4.1.35), if p_< 0 and & > (P -1)/p , the argument of the
numberator is less than =zero, and P, is undefined. If this
condition did occur, a circumstance which is unlikely in practice,
one would have to turn to use of the gamma distribution for
reproducing the coefficient of skewness. Ffom Eq.(4.1.34}, one finds

that a necessary condition for A # 0 is
i1/2
(-1 " #0/u. el (4.1.36)

Whether A 1is greater or less than zero depends on the relative
magnitudes of the coefficient of variation, o /u_, and the
coefficient of skewness, Y

In the case of 2 parameter transformation y, = ln(X£), Eq.
(4.1.26) is omitted from the set of transformation equations. In
the case u, o and py can be solved explicitly from Eq. (4.1.24),
(4.1.25) and (4.1.27). For this distribution, the skewness, C., 1is
related to the coefficient of variation, C,» in the following maner

(Chow, 19864).
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c,=3c +c® ... (4.1.37)

d) Beard’s Procedure

Beard (1972) introduced another procedure for generat.ing

streamflows:

Step 1. Compute the logarithm of each streamflow quant.ity. If one
or more streamflow items are zero, a small increment, such
as 0.1 percent of the mean annual flow is added to each

_ gquant.ity before taking the logarithm.

Step 2. Compute the mean(¥), standard deviation (s) and coefficient
of skewness (g) of the log values and stardandize them to
have zero mean and unit variance

1

t,= x, -®/s ... veee. (4.1.38)

Step 3. Transform these standardized values to normal distribution

using the inverse Wilson-Hilferty transformation as follows

K, =6/gig/2t +1) " -104g/6 ...l (4.1.39)
vhere K, is the normalized variate.
Step 4.Compute the lag one autocorrelation coefficient (r) of
these normalized values and generate the standardized
variates using

2 1r2
K = I‘K1 + (1-r ) €,,,  descssssceas (4.1.40)

1+1 i+1

Step 5. Transform each generated variate by first inputing the

skewness and then the mean and standard deviation

b, = {([g/6(K -g/6)+11°-1}2/g  .......... (4.1.41)
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X, =R+tgs i (4.1.42)
Step 6. Exponentiate the vallues obtained in step 5 and subtract
the small increment added in step 1. If a negative value

results, set it to zero.
4.2 AUTOREGRESSIVE-MOVING-AVERAGE MODELS, (ARMA)

Autoregressive and moving-average models can be combined to
model processes that otherwise would be operationally impossible t.orl‘
represent with single finite AR or MA models. An ARMA(p,q) model
takes the form

It
o
D
i
[4p]
()
=]
N
]
|
[4»]
v s]
-~

2 ;=]
(1-0,B-6,B ~ ... -0 B)Z,
GBIZ, = OMBIE, ...eenen... (4.2.1)

where B is the backward shift operator (i.e. BZ =2 )

The statioparity and invertibility conditions of the ARMA(p,q)
model correspond to those of the component MA and AR models. For
stat.ionarity and invertibility, the root.s of ¢(B) and of 6(B) must
lie outside the unit circle. f

The autocovariance function is found by multiplying Z, =

®.Z, _,+t .-+ O Z __+e - -~ ... O €, by 2., and finding
expected values,
Y, " EZZ J=8~v  +... oy, v (0 |
—elvzo(kbl)f i -equ'(k—q),_...... (4.2.2)
where
Y, (0 = E[Z,_ e ] Peresees (4.2.3)
Y, (k-1) = E[Z _e 1 ... (4.2.4)

The value for Yzo(k) wili be zero as long as k > 0, since it is

not. correlated for values of Z before t. The value for v_ (ko will
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not. be zero for k ¢ 0. 7 :
With the above in mind, it should be clear that for k > q, the
autocovariance (and autocorrelation) in Eq. (4.2.2) reduces to that

of an AR(p) model:

<
]

ﬂéiYk_1+ e + ‘Dka_p fork>q ..... (4.2, 2%a)

P = .0t ...+ @ppk“p fork>q ..... (4.2.4b)

For values of k less than or equalr to q, the autocovariance
will be a function of the moving-average terms and will depend on
all coefficients ﬁl,...,ﬁp, B, 90v-s ©,» and the variance oaa. The
ARMA(p,q) model then has the convenient property that its first q
autocorrelations depend on moving-average terms as well as
autoregress-ive terms. After g lags, autoregressive behavior takes
over from the last correlation value.

The variance of the process is given by Eq.(4.2.2) for k = O.

Evaluation of the variance requires the solution of v ETTRTL AR
4.2.1 Bstimation of ARMA(1,1) Parameters

Tile estimation of the parameters of the ARMA(p,g) model is not
a straightforward procedure. An algorithm can be formulated for the
purpose by following the method used for the basic ARMA(1,1) model
in this section. With regard to the number of parameters, parsimony
has been suggested. This mea.ﬁs that pt+q ought to be a minimum. For
example, an ARMA(1,1) model is preferable to an AR(3) model if it
is found that both types fit an observed sequence. |

A popular, and useful, model in hydroldgy is

Z-% 27 Sae SGle L O & & 2.8 (4.2.5)

1" %—3 1 -1

(1—61B)€t ............ €4.2.6)

(I—GIB)Zt

Stationarity and invertibil ity conditions correspond to the
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individual AR(1) and MA(1) models and so imply that the parameter

region is

“1<8 <1  eeeeeanas (4.2.7)
-1<e, <1 L (4.2.8)

Fig.(4.3) shows this admissible parameter space.

Using Eg. (4.2.2), the autocovariance function is

\ .
Yo =8,¥, + 0 -0y _(-1) ... (4.2.9)
= 2 2
Y, = 0,v,-6,0, ceeeeaee 14.2.10)
Y, =8y, ky2. ... (4.2.11)

To obtain Y_o¢-1) Eq. (4.2.5) is multiplied by €,_, and expectations

are taken:

2
Y. o(-1) = E[Z e 1= ¢,-©.)o,  ......... (4.2.12)

ze 1

Using Eq.(4.2.12) in Eq.(4.2.9) the autocovariance function of the

process is obtained as

_ z 2 2
Yo = (1-6, -20 6 )/(1-6_ )0, = ..., (4.2.13)
=2 2
Y, = (1—1?161.)(1131-81)/(1-#.51 o 0 ..., envaes (4.2.18)
Y, =8y k)2 eeeteceasan (4.2.15)

Note that the autocovariance will decay exponentially from a
starting value Yl; vhich is dependent on ©, . The sign of v, (and P
is defined by ¢ ,~6 . The sign of ® determines if the correlation
decay is smooth or alternates in sign.

The correlation function is given by

- -
N
1]

=4
(1-9.0.)(6,-0,)/ (146, —26.8,) .c.eeo..... (4.2.16)
P, = 8,P, ky»2z ... PP (4.2.17)

1
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The relationships shown in Eq. (4.2.16) and (4.1.17) and the
invertibility -stationarity parameter space define an admissible

region for the first two correlations.

‘pal < |91| ", O (4.2.17a)
P, > P (2p +1) p,<0 .. (4.2.17h)
P, > P, (2P ~1) T (4.2.17¢)

Fig.(4.3) illustrates the above region; correlation outside
that space indicate that the ARMA(1,1) is not a good model. Fig.
(4.4) diagrams the solution of parameter o, and 0, in terms of P,
and P, as given by Eq.(4.2.16) and (4.2.17). Fig.(4.5) gives
typical forms of the autocorrelation expected for various regions

of the parameter space.

{a)

p.=p (20, + 1) o, = (2o -1

-1 Q 1
Py

Figure 4.3 valid regions for the parameters and correlations
of a stationary and invertible ARMA(1,1) process(from Box and

Jenkins, 1978).
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Figure 4.4 Relation between correlations and parameters for
a stationary and invertible ARMA(1,1). Diagram may be used
for parameter estimation using the method of moments. (From

Box and Jenkins, 1976).
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Figure 4.5 Autocorrelation function for various ARMA(1,1)

models (from Box and Jenkins, 1978).
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4.2.2 Application of ARMA(1,1) Model

Normally distributed streamflows X, can be generated by using

Xt -y = @(Xt_i—u) + Gde(et—eet_l) ............ (4.2.18)
where 1 = mean of the flow series

¢ = standard deviation of the flow series

€, = normally distributed . independent random variable with

zero mean and unit variance
and
2 z z
g = (1-0 )/(140 -280) L ideeseasaes (4.2.19

#4.2.3 Modifications to Account for t.he_Skewness
a) Wilson-Hilferty Transformation

If the flow series X, is required to have a skewness v, »then
the terms ét in Eq. (4.2.18) must be replaced by a skewed random

variable £ _ given by
T, = {L14Y_€ /6-Y_/361°-132/Y_  eceeenae... (4.2.20)

where the skewness Y, of the random variable ¢ . is given by

Y_ = ¥ _{(148 2000/ (1-8 )}/ .
’ 3 2 2 3 :
{(1-6"4380°-30°0) / (1-0 D} ceereneinns (4.2.21)

If the skewness have a value larger than 3 then use Xirby’s

modification. ,
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b) Logarithmic Transformation

Another method to deal with skewed data is to use a log normal
transformat.ion. The mean, standard deviation , lag one
autocorrelation coefficient in the log domain and the location
parameter are cobtained from Eq. (4.1.24) - (4.1.27).

In the case of three-parameter log normally distributed
process. with an ARMA(1,1) autocorrelation function ih the normal

domain the auwtocorrelation in the X domain is given by

p_(1) = {exp(Py(l)dyz)—l}/{exp(6y2}~1} .......... (4.2.22)
id—2 = 2
0,0 = {exp(p (DB, 0, “)-13/{exp(c “~13} ........ (4.2.23)
where
P (1) = (18 O ) (B O}/ {140 =20 0}  ©uuvenn.. (4.2.24)
¥ 3 Yy ¥ Vv ¥ . ¥ y ¥y

As is true in the lag one Markov case, the nonlinear transformation
results in an autocorrelation function‘in the X domain, which is
distorted from thé theoret.ical form for an ARMA(l,l) process. Since
use of the ARMA(1,1) process to approximate self-similar hydfologic
time series requires knowledge of the values of & and 6_ (the
equivalent. ARMA(1,1) parameters in the X domain) some eguivalence
must be established between the parameters in the X and Y domains.
This equivalence will obviously be only approximate, since the
three-parameter log normally distribution generated sequences will
not. be truly ARMA(1,1). The most straightforward approach is to
establish the equivalence by equating the correlation coefficiehts
of a (theoretical) log normal ARMA(l,l) process and those of the
approximate sequence derived by transforming-a normally distributed
ARMA(1,1) sequence. If we assume that &_ and 8, are (known) desired
values, with the corresponding o, and e required for a given, this
';pproach leads to

2

p (1) = 1n|:1+px(1)(exp(oyz>-1>]/oy e, (4.2.25)
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P (2) = 8 P(1) = 1n[1+Px(2)(exp(cyz)—l)]/dyz ...... (4.2.26)
from which

o, = {ln[1+px(2)(exp(oya)—l)]}/
{ln[1+px(1)(exp(dyz)—l)]} ......... (4.2.27)

To solve for 6 , let p_(1) = C = 'C(dix,ex,dy) ; than ,
{(1-% 6 (@ -6 Y}/ (146 2—2115 a)=C ... (4.2.28)
¥ ¥ Y ¥ ¥ ¥y ¥
where C is constant for a given P, and g, . This may be written as

6 +a0 +1 =0 i . (4.2.29)
b ¥

where
A ={0 “+1-28 C}/{C-% } ciodleeon (4.2.30)
¥ ¥ ¥ ) ]

0f the two roots of (4.2.29), only one satisfies the stationarity
condition (Box and Jenkins, 1970). In addition, the requirement A”
> 4 must be met to yield real solutions for e_. The effect of +this
requirment is to establish a constraint SR P(@x,_cy). This
functional relat.ionship is shown by Burges and Lettenmaier (1975);
however, in practice this requirment will be important only for o
$ o, which corresponds to negative values of the correlation
coefficients of lags one and two in the X domain, not a condition

of practical hydrologic interest.
¢) Beard’s Procedure

Another method to generate skewed flows is to use Beard’s
Procedure wit.h an ARMA(1,1) model.
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Step 1. Compute the logarithm of streamflow data. In the case where
the data contain zero flows, add aAsmall increment. such as 0.1
of mean annual flow to each flow before taking the logarithm.

Step 2. Compute the mean (X), standard deviat.ion (s) and skewness

(g) of the log values x,).
Step 3. Standardize the log values to have zeroc mean and unit

variance

LA €3 L (4.2.31)
Step 4. If these standardized values exhibit. skevwness transform

this to a normal distribution by using

K, = 6/gl(gt /240" "1} + g/6 ..ol (4.2.32)
¢
Step 5. Since an ARMA(1,1) model is assumed in this case, its
parameters ¢ and 0 are estimated by the method of moment
for the tranformed values K,.

Step 6. gennerate normal variates using

K,,, = 0K +0_(e ~B¢ ) AN B IY ¢ (4.2.33)

i+ 1

Step 7. Transform each generated value using the inverse

transformations of Eq.(4.2.32) and (4.2.31)

o+
[t

(14K ,g/6-g /36)°=1)2/8 tverenenenen.. (4.2.38)
6et, DV LUNIANg . V1AL - L. (4.2.35)

P
il

Step 8. Find the antilogarithm of the values obtained in step 7,
and subtract the increment added in step 1. If any negative

value results, set it to zero.
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4.3 APPLICATION FOR ACTUAL DATA

Using AR(1) and ARMA(1,1) models 1000 years of streanflous
were generated for each river. The AR(1) can be applied all streams
while the ARMA(1,1) model is limited in certain cases where the
parameters are outside a region for the invertibility-stat.ionarity
condition. The procedures adopted are AR(1) and ARMA(1,1) and are
applnied to various rivers (Table 3.1). Abbreviations for the models

are as follows.

Hist. - Historical values

ARIWHT - AR(1) with Kirby’s modified W-H tranformation
ARILT-2 - AR(1) with 2 parameter log normal distribution
ARILT-3 - AR(1) with 3 parameter log normal distribution
AR1BP - AR(1) with Beard’s procedure '

ARMAWHT - ARMA(1,1) with Kirby’s modified W-H tranformation

ARMAIT-2 - ARMA(1,1) with 2 parameter log normal distribution
ARMAIT-3 .- ARMA(1,1) with 3 parameter log normal distribution
ARMABP - ARMA(1,1) with Beard’s procedure

4.4 DISCUSSION OF RESULTS

The results obtained by appiying the models to various
rivers are tabulated in Table 4.1 - 4.3. The following describes

the results in terms of principal statistics.

4.4.1 Mean, Standard Deviation and Lag One Autocorrelation
Coefficient |

All the model results slightly overestimated the mean for all
of the rivers. All the models except. AR1BP, ARMALT-2,' ARMALT-3 and
ARMABP slightly underestimated the standard deviation for all the
rivers, while the model ARMABP overestimated it for all of the
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rivers. The model AR1BP overestimated it for most of the rivers
excepl. Ping River, Wang River and Nam Mae Chaem. The model ARMALT-2
and ARMALT-3 overestimated for Nam Mae Chaem Nam Mae Rim and Ngao
River. All the models except ARIBP preserved the lag one
autocorrelation coefficient. In the case of Wang River and Nam Mae

Taeng, the model AR1BP slightly overestimated the parameters.
4.4.2 Skewness and Hurst Coefficient

All the models preserved the skewness except a few cases.
Model ARILT-2 slightly overestimated the skewness for Yom River,
Nan River, Ngao River and Nam Pat. The AR1ET-2 model slightly
underestimated skewness and Hurst coefficient for Ping River. The
model AR1BP overestimated the skewness for Yom River, Nan River,
Nam Mae Taeng, Ngao River and Nam Pat. In the case of Ngao River,
the model ARMALT-3 resulted in a small negative skewness where as
the historical value is positive. The Hurst Coefficient is found
that all the models resulted lower than the corresponding

historical values for all of -the rivers.
4.4.3 Maximum, Minimum and Percentage of Zero Flows

All the models resulted the maximum values larger than the
historical values and the minimum values lower than the historical
values for most of the rivers except model ARIWHT and AR1LT-3. The
minimum values are larger than the historical values for Ping
River. Except for the modelé AR1LT-2, AR1BP, ARMALT-~Z and ARMABP,

all the other models resulted in some negative flows being generated.

4.5 SUMMARY

From the results, it was observed that all the models slightly

overestimated the mean and the Hurst coefficient. values were lower
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than the historical values for all of the rivers. The others
paramet.ers (standafd deviation, skewness  and 1ag one
~autocorrelation) from AR(1) model are comparable with ARMA(1,1)
model. When modified, the former model can preserve the parameters

better than the latter model.
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