CHAPTER FIVE
LONG MEMORY — ANNUAL FLOW MODELS

The recent advances in the fields of operations reseach and
computer technology have had an enormous impact on synthetic
hydrology. More and more hydrologists and engineers are using
synthetic sequences in the design, operation and management. of
water resources systems. Even though the determination of an

~optimum solution by linear or dynamic programming for a given

streanflow sequence is deterministic, the stochastic nature of the
streamflow enters the system through synthetic streamflow
sequences. The various streamflow data generation models existing
at present can be classified into two categories-the short.-memory
type and the long-memory type. Models which exhibit long-term
persistance(Hurst effect) are usually more expensive to operate in
terms of computer time than the simple ant.oregressive (Markov) and
ARMA models. As a consequence, it has not been widely used _in
resource evaluation. There are caseé; “however, where the
stochast.ic component exhibité a long-term dependence. Higher order
autoregressive models have been tried but great difficulties have
been encountered in computing the coefficients or in deciding on
the order of the model t.o be used (Fiering, 1968;.Garcia, 1971).
The aim of this chapter is to apply the ffGn and BL models to a
set. of Northern Thailand streams and to compare the various
parameters obtained from the generated sequences to that of the
historical sequénces. Before going on to the details of ffGn and
BL models, a brief description of the Hurst phenomenon is given
below.

HURST PHENOMENON

Let X2 X, -0 X be a stochastic sequence. The cumulative
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sum of the deviations from the mean is given by:

K n
Dk =X X1 - (k/m)Z Xi ............... (5.1
i=1 i=1

The adjusted range is defined as:

R = max Dk -min Bk ..... N~ N7 S\ ¥ (5.2)
k k

and the rescaled range as the ratio of the adjusted range t.o the
estimate of the standard deviation of the sequence. For
short.—memory models, which include t.hé Markovian family, the
rescaled ra:;xge varies for long generated sequences the square root

of the length. That is:
RS =0 s (5.3)

For approximately 900 geophysical time series including streamflow

records, Hurst (1951, 1958) found R/S to vary as:

R/S= " N ... (5.4)
where h is a constant. The value of h ranged from 0.46 to 0.96
with a mean of 0.729 and standard deviation 0.092 for all the
series. This behavior is called the Hurst phenomenon and the

exponent.,, h, is referred to as the Hurst coefficient, which is

est.imated from:

H = log(R/S)/log(n/2) = ceeiiieeeininnns (5.5
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6.1 FAST FRACTIONAL GAUSSIAN NOISE (ffGn) MODEL

Mandelbrot (1971) suggested the fast fractional Gaussian
noise generator (ffGn). The concept. is simple and the most
efficient. of the approximations, which is def inedr below.

The ffGn variates (X *_(t;H)) are obtained by summing both a
short memory Markov process and a long memory one. Without loss of

generality, assume that X (t;H) has zero mean and unit variance:
Xf(t.;H) = XL(t;H) + Xh(t) ™Neyr 5+ » Ne - <% - 5 (5.1. 1)

where XL(t.;H) and X, ) represent. the long and short, memory Markov
terms, respéct.ively.
Mandelbrot (1971) neglected the high frequencies and the very

low frequencies and defined the low frequency term as follows:

L

X (B3H) = TWXWST) ... (5.1.2)

m=1

where X(t.;rm) is a Markov-Gauss process of zero mean, unit

. . . K
variance, and autocorrelation function r. .

r_ = exp(-B ) s A (5.1.3)
W= [HEE-D @ T E O [seam T L .10
1. = smallest integer above log (QT})/log B ee-. (5.1.5)

wWhere T is the number of time periocds of simulation desired, B is
the base, and Q is the quality factor, usuwally taking values
around 4, 5 and 6. The base B and the quality factor @ together
determine the quality of approximation. Mandelbrot, (1971) has
suggqst.ed the use of in réng 2 < B < 4, vhile Chi et al. (1973)
have suggested the use of B in the range 2 { B <3 and L =20.

The covariance of the low-frequancy term for lag k is
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L .
CUGH =3 W  exp-kB ™ ... (5.1.6)

m=1

The variance of the process is

L
2,

C(OsH) = T W A AV LTIAMY) .- .00 N - - . (5.1.7)
L m

o om=1
¢ (o3 = BEH-1B T (32w 13N L. (5.1.8)

It should be noted that the second term in the braces in Eq.
(5.1.8) was left out of Mandelb_rot.’s (1971) paper. Its exclusion
does not cause any difference in the value of C (0sH) for low to
moderate values of H, but for high values of H (say, greater than
- 0.8) the error is quite significant.

As a result of neglecting the high frequency and some of the
low frequency eff ecf.s in deriving the expression for the
low frequency term, the variance of the latter will be less than
1. To make up this deficiency in the high frequency, one could add

a simple Markov process to f.h;a low frequency variance as follows :

ﬁh = 1""CL(0;H) L N N N L R R ] (5.1.9)
L
2 Z .
Gh = 1_ Ew Ssansasssasw ERE I I N _(5.1-10)
™m
m=1

The high frequency lag one autocorrelation coefficient is therefore
Ph = {P(1)—CL(1;H)}/{1—CL(0;H)} ................. (5.1.11)

where p(1) is the lag one autocorrelation of the £fGn variates
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L

C(I3H) = T W_exp(-B ) iiiiiiiiieiinns (5.1.12)

m=1

from Eq.(5.1.8), and CL(O;H) is defined in Eq.(5.1.7)
5.1.1 Application of ffGn Model

The steps involved in genera{.ing normally distributed flows
by using ffGn are briefly describtioned below

St.ep‘l

Obtain the values of the mean (X), standard deviation(s) lag
one autocorrelation coefficient (p(1)) and Hurst coefficient
(H} from the historical sequence. Specify the values of B, Q
and T. These values are necessary to calculate L (see Eq.

5.1.5). However, it is found that B = 3 and L. = 8 are adequsate.

Step 2
Compute the weighting coefficients W,m=12, ..., L from

Eq.(5.1.4), the aubtocorrelation of the low frequency Markov

processes r , m =1, 2, ..., L from Eq. (5.1.3), and the sums

L L

EW " and IW r_
m=1 e 1 ’
Step 3

Compute the variance and the 1lag one autocorrelation
coefficient of the high frequency term from Eq. (5.1.10) and
(5.1.11), respectively.
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Step 4

L independent random numbers are assumed to be equal to the L
Markov processes to initiate the data generation procedure. (This
could easily be done in step 2 after calculating each weighting
factor;) Also, set the high frequency Markov process equal to
another random number

X(O,rm) = Gm(O) M= 1,2, ooy L ceeeeereuns (5.1.13)
Xh(O) = GO} i (5.1.14)
Step 5

Compute all the Markov terms in the low frequency expression,
and obtain the weighted sum Eq. (5.1.2). This gives the

low frequency term

X, (31 ) = r X (t-137 ) + (-1 O %6 ) ... (5.1.15)
m m L ™m ™m ™m

L m=1, 2,..., L

XL(t;H) = 3 WMXL(t;rm) ........... (5.1.18)
m=1
Step 6
The high frequency Markov term is obtained from
Z 1 .
Xh(t) = PhXh(t—l) + (1—Ph } Gty  L.e..... i (5,1.17)
Step 7
Finally, the ffGn variate is obtained from

Xf(t;H) =X (I + X ) il {5.1.18)
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By wusing the following inverse tranformatioh, the actual flow

value is obtained ;
Xt =X + SXP(t;H) ................... (5.1.19)

Repeat. steps 4-7 until the required lensth of the sequence is
generated.

5.1.2 Modifications to Account for the Skewness

Since the f{fGn process has been derived for the Gaussian
case, an obvious way to generate skewed variates is to use a log
normal transformation. Even though low-order moments can be
preserved in the generated sequences by using Matalas (1967h)
moment. transformation equations, the Hurst coefficient will not be
the same in the log and the actual flow domaihs. A simpler and
more straightforward approach is to generate the skewed fast
fraction noise (ffn) variates_by modifying the random numbers used
in the generation process rather than using highly nonlinear
normalizing transformations. The necessary skewness in the ffn
variates may be obtained in different ways, which are ééscribed
below.

1. Modify the high frequency term only.

The required skewness for the random numbers used in the

generation of the high frequency Markov term is given by

Yie) = [1—ph°:|/wh°[<1—phz) R S S (5.1.20)

2. Modify the low frequency term only.
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In this approch, there are two possibilities. One is to have
all the L Markov process with the same skewness. This means all

the random numbers will have different skewnesses given by

L
vie ) = (1—rm3)v(x£)/[(1-rmz)9,22 ¥ 1m=1,2,...., L (5.1.21)

m=1

One is to use the same skewness for all the random numbers
used in the low frequency Markov processes. The required commond

skewness for the random numbers is given by

| R
Y€)= YXD/MHEW " (1-r H%ra4-r >y L. (5.1.22)
L £ ™m ™m m

m=1

3. Modify both the high and the low frequency term.

Again, two alternatives are 'avai_lable:

a.) If the same skewness is assumed for all the random
numbers in the high and"iow frequency Markov terms, then the
required skewness is given by

L
3 2
Y ) =¥(XIA{ZW (1-r )
t* + m m

mal

3

*Zra-r

z 3/
)
h

3 2 . 3
+ 0. (-p /(1-p, Y il (5.1.23)

b.) The second alternative is to use different skewnesses for
the high and low frequency terms. If one divides the total
skewness v(X_) into v, (X)) and ¥, X)) for high and low frequency

terms, respectively, such that

viX ) = v, (X)) + Y XL e (5.1.24)
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then the corresponding skewness for the random numbers in the
high and low frequency terms can be obtained from

3 a3 2 3rs2
(1-p, )Y, (X740, (1-p, )} aie..... (5.1.25)

Y(eh)

L
Y XIHEW (r O P raee Dy Ll (5.1.26)

m=1

'Y(EL)

The sum of the skewness of two variates, in general, will not be
~ equal to the skewness of the resulting variate obtained by summing
the variates. Eq. (5.1.24) serves only the purpose of dividing the
skewness in two, and the two components are further modified in
Eq.(5.i.2_5) and (5.1.26) in such a way that the resulting ffn will
have the desired skeuness.

A problem associated with this latter method is how to divide
the skewness of the ffn into high and low frequancy components.
Theoret.icé.lly, there is no restriction for dividing the skewness,
but Dbecause of the limitations of the available t.ransforma£ions
such as W-H tranéf ormation (McMahon and Miller, i197‘1), the
division can be made in such a way that ﬂhe skewnesses of the
random numbers for both the high and the low frequency term are
within the limits of applicability of the skew transformations.

Of these three basic modifications the first one is simple
and easy to apply, as one has to modify only one Markov process.
Since the W-H transformation is approﬁcimat.e (Ltheoret.ically, the
expected value of the mean is not zero), the quality of simulation
" depends on how many skewed numbers are used to generate one ffn
variate. Sivapalan (1977) and Lettenmaier and Burges (1977b)
modified both the high and the low frequency term (modification
3a) to generate skewed flows. The skevwed flow can be generated by
f ollowir_lg the step by step procedure described earlier but
replacing G(0) in step 4 and G(t) in step 6 by €(0) and e(t.),_
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respectively, where
€(L) = 2/v(e) {14GLIV(E) /6=y (€) /36 —2/v (€)  ..... (5.1.27)

It was found that the Wilson-Hilferty transformation Eq.
(5.1.27) can be used for values of v(¢) up to 3. For v(e) > 3,
Kirby’s (1972) modified Wilson-Hilferty transformation could be
used.

5.2 BROKEN LINE (BL) MODEL

Mejia et al. (1972, 1974) presented an alternative
long-memory model the broken line (BL) process - to the fGn model.
The simple BL process which is the basis for the BL processes
results from a linear interpolation between equally spaced
independent Gaussian random variables in conjunction with random
displacément. of the starting point of the series in order to make
the series stationary (Fig. 5.1).

A simple BL process is given by :

S(t-ka) = 3 [n_+(n_, -n )/a(t-ma)lf_ (t) ... (5.2.1)

Lma,{(mi+lial
m=0

where n_ are independent and identically distributed random
numbers with zero mean and variance 0’2 sk is a random number
uniformly distributed over the interval (0,1); a is the time

distance among n_ ;5 and :

1, ma < t ¢ (mta
y =4 i e, (5.2.2)

(ma, (m+idal] .
o, otherwise
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Figure 5.1 Schematic representation of simple broken line

(from Mejia et al., 1972)

The variance of the process is 2/36° . Hence the generated n values
should be scaled by'(3/(2c5)2)1/z so that will have unit variance.

The autocorrelation function is given by :

1-3/4(k/a) ~ (2-k/a), 0g kg a
pky =4 t/ace-k/ay” a<k< 2a ... (5.2.3)
0 [ 2&6 k

5.2.1 Application of BL Model

By adding a number of simple BL process one can generate a
further process that will reproduce the phenomenon to be
simulated. For instance, various parameters of the BL process can
be chosen in such a way to model the ffGn and the necessary
derivations are given in Mejia et al. (1972, 1974).

The process Z(t), exhibitting the Hurst phenomena and a given
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lag one autocorrelation coefficient may be constructed from the

summation of L+1 simple broken lines,

L

2 =TVE )i (5.2.4)
m=o
where
v, = ta, T b/rza-na@ gt gt T ey e
. m=1,2,3 ..., L ........ (5.2.5)
v, = {1-z v HME AN AN - (5.2.6)

m=1

£ (L) is a BL process with parameters a_ ,km » Zero mean and unit

variance, for m=0 is the high frequency term.

b = CH(2H-1) (2H-2) (ZH-3) (2H-4) (2H-5) 1/E6(2> ""-1)1  (5.2.7)

a =ap ™~ . T (5.2.8)
m 1 .

and L, B, Q as defined under ffGn _
Following Bras and Rodriquez-Iturbe (1985), the value of a .
depend on a_, which can be obtained from T '
L—1

(1) = a, " b/I2(h-1) I3 (([1-3/(4a BN (2-1/(a, B II (8 B

n=0

1-h__2(h—1)n

+ 1/42-1/(a B™MI_(a B @ -3 "B y,
for a < 0.50 (5.2.9)

or

L-1 ’
(L) = a " b/r2h-1IT ((£1-3/(4a, B ") (2-1/(a,BHIT_(a,BM
n=0 .
+ 1/4(2-1/¢a B I _(a BM) (B™ -p* B> "
+ (1-b/ez-2ha * BT THL(-3/(48, %) (2-1/8 11, (a))
+ 1/42-1/72)°I_(a )1,

for B, T8, seesn- (5.2.10)
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where
1 if x> 1 1 6.5<x<1

Il{x) = ’ Iz(x) =

0 otherwise .0 otherwise

For this process

EL(ZB)T = 0.0 (5.2.11)

VarfZ(t)d = 2/36° (5.2.12)
1.

Y2 = 3727 A mrres SN~ PP WP e (5.2.13)

m=0Q

The process Z(t) can be given a particular skewness by specifying
v(n). Therefor, it can be used ,t.o simulate a phenomenon of a given
mean, standard deviation, skewness and that exhibits the Hurst
phenomena. The process, X(t), constructed from Z(t) of Eq. (5.2;4)

Xb) = u +o /2 Tz ... .. (5.2.14)

has a mean of u_, varviance dx’a « Hurst coefficient H, and p(1)
defined by the choige of a e If the sequence of n used for each

simple broken line has skewness coefficient.

L
vim = 22/ vz vy L (5.2.15)

m=0
then the skeness of X(t) is v(X). _
Alternatively, one can assume a value for a (> 1. In this
case let the value of lag one autocorrelation coefficient is

given by:
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j T X
p. = a @M B M 2 -] 3 [1-3/(4a, B

m=0

Z2(h—1m

(2-1/(a B ) 1B , a. . >1 ..., (5.2.16)

Then the high frequency term will be a simple Markov process with

variance given by
0 A 1-EY° 7 O sl b (5.2.17)
and the lag one autocorrelation coefficient :

p, = [P(1)-p 1/5 ° L Nl ) (5.2.18)

The second alternative is preferred to the first because of
the followiné reasons:

. 1. By choosing a value for a, beforehand avéids the problen
of solving Eq.(5.2.9) or (5.2.10) for a, . Instead, one has to
evalute the right-hand side of Eq.(5.2.16) for the chosen a,. |

2. Since a, > 1, one has to always generate less number of
random numbers compared to cases where a, < 1.

In addition, from the preliminary computer runs using the BL
model, Srikanthan énd McMahon(1978) observed that the variation
of P, with a, is not monotonic and the use of larger values of a,
(>4) resulted in considerable error in the mean of the generated
sequences. As a result, a value of 2 was chosen for a,, and it

performed satisfactorily for all the cases studied.
5.2.2 Modifications to Account for the Skewness

To generate skewed flows, The generating equations have to be
modified in the manner similar to ffGn. The following procedure

applies to the second method of using BL process. Modifying only
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the high frequency term requires it’s random numbers to have the

skewness given by

a a 2 arsz o
vie ) = v({1-p, /o, (1-p, ) 1 e (5.2.19)

The skewness of the random numbers,when both the high and low

frequency terms are modified,is givén by °

L
372 3 3 2
y{e) = v{1/2(3/2) 2V +o, (1-p )

m=1

3’2/(1—pH3)}‘1(5.z.20>

5.3 APPLICATION FOR ACTUAL DATA

The ffGn and BL models were used to generated the streamflous
for all the rivérs in Table 3.1. Two procedures were adapted, namely

i. Modifying the high frequency term only

2. Modifying both the high and low frequency terms

The values of B and L weré respectively 3 and 8 and the

‘procedures applied to various are as follow:

Hist - Historical values

FFGN-H - FFGN with only high frequency term modified

FFGN—}H, — FFGN with both the high and low frequency terms
modified

BL-H - BL with only high frequency term modified

BL-HL - BL with both the high and low f requéncy term

modif ied
5.4 DISCUSSION OF RESULTS

The various parameters estimated from the historical

sequences and the generated sequences are given in Table 5.1 - 5.2,
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The results in terms of principal statistics are discussed below.

5.4.1 Mean, Standard Deviation and lag one Autocorrelation

Coefficient.

All the models breserved the mean and standard deviation for
all rivers except. a few cases. Model FFGN-HL did not preserve the
mean and standard deviation for Wang River, Nam Mae Taeng, Nam Mae
Rim and Nam Pat.. The lag one autocorrelation is found to be larger
than the corresponding historical values in all the cases with the
exception that the results from model FFGN-HL are lower than the
corresponding historical values for Nam Mae Taeng, Nam Mae Rim and

Nam Pat.
5.4.2 Skewness and Hurst Coefficient

_Most of the models can preserve the skewness except model
FFGN-HL, which overestimates it. for Wang River, Nam Mae Taeng, Nan
Mae Rim and Nam' Pat. The Hurst Coefficient are found to be-
preserved for most of the rivers éxcept Nam Pat, which is slightly

underest imat.ed.
5.4.3 Maximum, Minimum and Percentage of zero flows

The maximum values from all the models are larger than the
“historical values and the minimum values are lower than the
historical values for most of the rivers except model FFGN-H on
Ping River and Nam Mae Khan. Model FFGN-HL and BL-HL on Ping River
give the minimum values larger than the historical values. The
amount. of zero flows generated by all the models is either zero or

very small.
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5.5 SUMMARY

From the above observations, it can be concluded that BL
model with both frequency terns modified by W-H transformation is
t0o be preferred than FFGN for alllrivers. BL process could be used
successfully and efficiently to preserve the long ﬁerm persistance
effects in the generated sequences as evidenced by the Hurst

coefficient estimated from the historical sequence.
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