CONTENTS

•	-0101915	Page
	JAHHIA 8	
	ACKNOWLEDGEMENTS	iii
	ABSTRACT (English)	iv
	ABSTRACT (Thai)	vi
	LIST OF TABLES	жіі
	LIST OF FIGURES	xviii
	LIST OF SCHEMES	xxv
	ABBREVIATIONS	xxvi
CHAPTER 1:	INTRODUCTION TO BIODEGRADABLE POLYMERS	1
	1.1 Biodegradable Polymers	1
	1.2 Applications of Biodegradable Polymers	1
	in Medicine	
	1.3 The Requirements of a Biodegradable Polymer	3
	1.4 Synthetic Absorbable Sutures	4
	1.5 Multifilament versus Monofilament Sutures	6
	1.6 Aims of This Study	. 97
CHAPTER 2:	BLOCK COPOLYMERS AND THEIR POTENTIAL USE AS	9
	BIOMATERIALS OV CHIANG MAIL	
	2.1 Introduction to Block Copolymers	9
	2.2 Synthesis of Block Copolymers	10
	2.3 Block Copolymers as Biodegradable Materials	14

1	Page
2.3.1 Previous Work and its Relevance to	14
This Study	
2.3.2 Poly(glycolic acid)	16
2.3.3 Poly(ethylene glycol)	19
CHAPTER 3: EXPERIMENTAL RESULTS	21
3.1 Synthesis of Block Copolymers	21
3.1.1 Monomer Preparation	21
3.1.1.1 Synthesis of Glycolide	_e 21
3.1.1.2 Purification of Poly(ethylene glycol)	24
3.1.2 Synthesis of Poly(glycolic acid-b-	24
oxyethylene)	
3.2 Purification of Poly(glycolic acid-b-	28
oxyethylene) by Ethanol Extraction	
3.3 Infrared Spectroscopy	42
3.4 Proton Nuclear Magnetic Resonance (H-NMR)	52
Spectroscopy	
3.5 Determination of Melting Point/Range	68
3.5.1 Visual Observation	68
3.5.2 Differential Scanning Calorimetry (DSC)	68
3.5.2.1 Theory and Instrumentation	68
3.5.2.2 Analytical Procedure	69
3.5.2.3 Results	70
3.6 Thermogravimetry (TG)	92
3.6.1 Analytical Procedure	92
3.6.2 Results	93

		Page
	3.7 Dilute-Solution Viscometry	113
	3.7.1 General Introduction	113
	3.7.2 Determination of Intrinsic Viscosity	114
	3.7.3 Intrinsic Viscosity-Molecular Weight	116
	Relationship	
	3.7.4 Experimental Procedure	117
	3.8 'In Vitro' Biodegradation of PGA and	123
	P(GA-b-PEG)	
	3.8.1 Apparatus	123
	3.8.2 Experimental Procedure	123
	3.8.3 Weight Loss Calculations	124
CHAPTER 4:	DISCUSSION AND CONCLUSIONS	138
	4.1 Mechanisms of the Polymerisation of Glycolide	140
	and Copolymerisation of Glycolide with PEG	
	4.1.1 Mechanism of Polymerisation of Glycolide	140
	4.1.2 Mechanism of Copolymerisation of	145
	Glycolide with PEG	
	4.2 Copolymer Characterisation - Analysis and	151
	Conclusions	
	4.2.1 Copolymer Composition	151
	4.2.2 Copolymer Microstructure	152
	4.2.3 Copolymer Molecular Weight	153
	4.2.4 Copolymer Morphology	155
	4.2.5 Copolymer Thermal Stability	158

	Page
4.3 `In Vitro' Biodegradability of PGA and	159
P(GA-b-PEG)	
ขามยนต์	
SUGGESTIONS FOR FURTHER WORK	163
REFERENCES	166
APPEND I CES	169
ATIV	174
	6
C) Cooc SI	
141 IINIVERS	
A OINI	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
1 • 1	Examples of biodegradable polymers in current use as	5
	synthetic absorbable sutures	
2.1	Block copolymer notations used in polymer science	10
3.1	Summary of polymerisation experiments carried out in	27
	this work	
3.2	Block copolymerisation studies of glycolide and	30
	PEG 200 using aluminium triethyl as initiator:	
	appearance of products before and after purification	
3.3	Block copolymerisation studies of glycolide and	32
	PEG 1500 using aluminium triethyl as initiator:	
	appearance of products before and after purification	
3.4	Block copolymerisation studies of glycolide and	33
	PEG 200 using stannous oxalate as initiator:	
	appearance of products before and after purification	
3.5	Block colymerisation studies of glycolide and	34
	PEG 1500 using stannous oxalate as initiator:	
	appearance of products before and after purification	19 Ri
3•6	Weight loss from poly(glycolic acid-b-oxyethylene)	37
	following purification: copolymer from PEG 200 using	
	aluminium triethyl as initiator	
3.7	Weight loss from poly(glycolic acid-b-oxyethylene)	38
	following purification: copolymer from PEG 1500 using	
	aliminium triethyl as initiaton	

Table		Page
3.8	Weight loss from poly(glycolic acid-b-oxyethylene)	39
	following purification: copolymer from PEG 200 using	
	stannous oxalate as initiator	
3.9	Weight loss from poly(glycolic acid-b-oxyethylene)	40
	following purification: copolymer from PEG 1500 using	
	stannous oxalate as initiator	
3.10	Comparision of IR data of glycolic acid and glycolide	45
3.11	Comparision of IR data of poly(glycolic acid),	49
	poly(ethylene glycol) and poly(glycolic acid-b-	
	oxyethylene)	
3.12	Interpretation of ¹ H-NMR spectrum of PGA synthesized	54
	at 200°C using aluminium triethyl as initiator	
3.13	Interpretation of 'H-NMR spectrum of PEG 200	56
3.14	Interpretation of 'H-NMR spectrum of P(GA-b-PEG 200)	58
	99:1 synthesized at 200°C using aluminium triethyl	
	as initiator	
3.15	Interpretation of 'H-NMR spectrum of P(GA-b-PEG 200)	62
	97:3 synthesized at 200°C using aluminium triethyl	
	as initiator	
3.16	Interpretation of 'H-NMR spectrum of P(GA-b-PEG 200)	65
	94:6 synthesized at 200°C using aluminium triethyl	
	as initiator	
3.17	Comparison of the comonomer mole % ratios in the initial	/e ₆₇ STT
	comonomer feeds and in the resulting copolymer composition	ns
	for the P(GA-b-PEG 200)/Al(C ₂ H _s) ₃ /200 °C samples	

labie		Page
3.18	Comparison of DSC melting points (peak T_m) of crude	75
	and purified P(GA-b-PEG 200): aluminium triethyl as initiator	
3.19	Comparison of DSC melting points (peak T_m) of crude	75
	and purified P(GA-b-PEG 200): stannous oxalate as	
	initiator	
3.20	Comparison of DSC melting points (peak T_m) of crude	76
	and purified P(GA-b-PEG 1500): stannous oxalate as	
	initiator	
3.21	Visually observed melting ranges and DSC-derived	83
	melting peak parameters for poly(glycolic acid) and	
	P(GA-b-PEG 200) synthesized using aluminium	
	triethyl as initiator	
3.22	Visually observed melting ranges and DSC-derived	84
	melting peak parameters for poly(glycolic acid) and	
	P(GA-b-PEG 1500) synthesized using aluminium	
	triethyl as initiator	
3.23	Visually observed melting ranges and DSC-derived	85
	melting peak parameters for poly(glycolic acid) and	
	P(GA-b-PEG 200) synthesized using stannous oxalate	
	as initiator	
3.24	Visually observed melting ranges and DSC-derived	Ve ₈₆
	melting peak parameters for poly(glycolic acid) and	
	P(GA-b-PEG 1500) synthesized using stannous oxalate	
	as initiator	

Table		Page
3.25	DSC heats of fusion and % crytallinities of PGA	87
	synthesized under various conditions	
3.26	Dynamic TG data for PGA synthesized at 180°C using	94
	stannous oxalate as initiator	
3.27	The melting and thermal degradation ranges of	104
	poly(glycolic acid), poly(ethylene glycol) and	
	P(GA-b-PEG 200) using aluminium triethyl as	
	initiator	
3.28	The melting and thermal degradation ranges of	106
	poly(glycolic acid), poly(ethylene glycol) and	
	P(GA-b-PEG 1500) using aluminium triethyl as	
	initiator	
3.29	The melting and thermal degradation ranges of	107
	poly(glycolic acid), poly(ethylene glycol) and	
	P(GA-b-PEG 200) using stannous oxalate as	7//
	initiator	
3.30	The melting and thermal degradation ranges of	109
	poly(glycolic acid), poly(ethylene glycol) and	
	P(GA-b-PEG 1500) using stannous oxalate as	
	initiator	
3.31	Intrinsic viscosities of poly(glycolic acid) and	118
	P(GA-b-PEG 200): using aluminium triethyl as	
	initiator i g h t s r e s e	

Table		Page
3.32	Intrinsic viscosities of poly(glycolic acid) and P(GA-b-PEG 1500): using aluminium triethyl as initiator	120
3.33	Apparatus used in `in vitro' biodegradability experiments	123
3.34	Weights and % weight retentions of PGA, synthesized at 200°C using aluminium triethyl as initiator, immersed in pH 7.40 phosphate buffer solution	125
3.35	Weights and % weight retentions of P(GA-b-PEG 200) 99:1, synthesized at 200 °C using aluminium triethyl	126
3•36	as initiator, immersed in pH 7.40 phosphate buffer solution Weights and % weight retentions of P(GA-b-PEG 200) 97:3, synthesized at 200°C using aluminium triethyl as initiator, immersed in pH 7.40 phosphate buffer	127
3.37	solution Weights and % weight retentions of P(GA-b-PEG 200) 94:6, synthesized at 200°C using aluminium triethyl as initiator, immersed in pH 7.40 phosphate buffer	128
3.38	Weights and % weight retentions of P(GA-b-PEG 200) 99:1, synthesized at 200°C using stannous oxalate as initiator, immersed in pH 7.40 phosphate buffer solution	Ed HJ 129 niversity r v e d

Table		Page
3.39	Weights and % weight retentions of P(GA-b-PEG 1500)	130
	99:1, synthesized at 200°C using aluminium triethyl	
	as initiator, immersed in pH 7.40 phosphate buffer	
	solution	
3 • 40	Comparison of the % weight retentions of PGA from	132
	this study and commercial PGA ('DEXON') sutures from	
	a previous study [26] after immersion in pH 7.40	
	phosphate buffer solution, at 37 °C for 6 weeks	
	3	
		502

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
3.1	Apparatus used in the two-stage preparation of	23
	glycolide	
3.2	Apparatus used for the block copolymerisation of	25
	glycolide and PEG	
3.3	Apparatus used for the purification of the crude	28
	product by hot ethanol extraction	
3.4	Infrared spectrum of glycolic acid	43
3.5	Infrared spectrum of glycolide	43
3.6	Infrared spectrum of poly(glycolic acid)	46
3.7	infrared spectrum of poly(ethylene glycol) PEG 200	47
3.8	Infrared spectrum of poly(glycolic acid-b-oxyethylene)	47
	99:1/200°C/using aluminium triethyl as initiator	
3.9	Infrared spectrum of poly(glycolic acid-b-oxyethylene)	48
	97:3/200 °C/using aluminium triethyl as initiator	
3.10	200 MHz ¹ H-NMR spectrum of PGA synthesized at 200 °C	53
	using aluminium triethyl as initiator;	
	solvent = d _e -DMSO at 90 °C	
3.11	200 MHz H-NMR spectrum of PEG 200 in d -DMSO at 90 °C	55
3.12	200 MHz ¹ H-NMR spectrum of P(GA-b-PEG 200) 99:1	e ₅₇ SitV
	synthesized at 200°C using aluminium triethyl as	
	initiator; solvent = d -DMSO at 90°C	

Figure		Page
3.13	200 MHz H-NMR spectrum of P(GA-b-PEG 200) 97:3	61
	synthesized at 200°C using aluminium triethyl as	
	initiator; solvent = d _s -DMSO at 90°C	
3.14	200 MHz ¹ H-NMR spectrum of P(GA-b-PEG 200) 94:6	64
	synthesized at 200°C using aluminium triethyl as	
	initiator; solvent = d _e -DMSO at 90°C	
3 • 15	Comparison of the DSC thermograms of crude and purified	71
	copolymers	
	* Crude P(GA-b-PEG 200)99:1/200°C/aluminium triethyl	
	** Purified P(GA-b-PEG 200)99:1/200°C/aluminium triethyl	
3.16	Comparison of the DSC thermograms of crude and purified	71
	copolymers	
	* Crude P(GA-b-PEG 200)97:3/200°C/aluminium triethyl	
	** Purified P(GA-b-PEG 200)97:3/200 °C/aluminium triethyl	
3.17	Comparison of the DSC thermograms of crude and purified	72
	copolymers	
	* Crude P(GA-b-PEG 200)94:6/200°C/aluminium triethyl	
	** Purified P(GA-b-PEG 200)94:6/200°C/aluminium triethyl	
3.18	Comparison of the DSC thermograms of crude and purified	72
	copolymers	
	* Crude P(GA-b-PEG 200)99:1/200°C/stannous oxalate	
	** Purified P(GA-b-PEG 200)99:1/200 °C/stannous oxalate	
3.19	Comparison of the DSC thermograms of crude and purified	73
	copolymers	
	* Crude P(GA-b-PEG 200)97:3/200 °C/stannous oxalate	
	** Purified P(GA-b-PEG 200)97:3/200 °C/stannous oxalate	÷

Figure		Page
3.20	Comparison of the DSC thermograms of crude and purified	73
	copolymers	
	* Crude P(GA-b-PEG 1500)99:1/180 °C/stannous oxalate	
	** Purified P(GA-b-PEG 1500)99:1/180 °C/stannous oxalate	
3.21	Comparison of the DSC thermograms of crude and purified	74
	copolymers	
	* Crude P(GA-b-PEG 1500)97:3/180 °C/stannous oxalate	
	** Purified P(GA-b-PEG 1500)97:3/180 °C/stannous oxalate	
3.22	The DSC curve of PEG 200	77
3.23	Comparison of the DSC curves of poly(glycolic acid) and	77
	P(GA-b-PEG 200) of various compositions synthesized at	
	200°C using aluminium triethyl as initiator	
3.24	Comparison of the DSC curves of poly(glycolic acid)	78
	and P(GA-b-PEG 200) 99:1 synthesized at various	
	temperatures using aluminium triethyl as initiator	
3.25	Comparison of the DSC curves of poly(glycolic acid)	78
	and P(GA-b-PEG 1500) 99:1 synthesized at various	
	temperatures using aluminium triethyl as initiator	
3.26	Comparison of the DSC curves of P(GA-b-PEG 200) 99:1	79
a	and P(GA-b-PEG 1500) 99:1 synthesized at 200 °C using	
	aluminium triethyl as initiator	
3.27	Comparison of the DSC curves of poly(glycolic acid)	(e ₇₉) (1)
	and P(GA-b-PEG 200) of various compositions synthesized	
	at 180°C using stannous oxalate as initiator	

Figure		Page
3.28	Comparison of the DSC curves of poly(glycolic acid)	80
	and P(GA-b-PEG 200) 99:1 synthesized at various	
	temperatures using stannous oxalate as initiator	
3.29	Comparison of the DSC curves of poly(glycolic acid)	80
•	and P(GA-b-PEG 1500) 99:1 synthesized at various	
	temperatures using stannous oxalate as initiator	
3.30	Comparison of the DSC curves of P(GA-b-PEG 1500) 99:1	81
	and P(GA-b-PEG 1500) 97:3 synthesized at 200°C using	
	stannous oxalate as initiator	
3.31	Comparison of the DSC curves of P(GA-b-PEG 200) 99:1	81
	and P(GA-b-PEG 1500) 99:1 synthesized at 200°C using	
	stannous oxalate as initiator	
3.32	Comparison of the DSC curves of P(GA-b-PEG 200) 99:1	82
	synthesized at 200°C using different initiators	
3.33	Comparison of the DSC curves of P(GA-b-PEG 1500) 99:1	82
	synthesized at 200°C using different initiators	
3.34	Dynamic TG curve for PGA synthesized at 180°C using	95
	stannous oxalate as initiator	
3.35	Comparison of the TG curves of PGA synthesized at	95
	various temperatures using aluminium triethyl as	
	initiator	
3.36	Comparison of the TG curves of PGA synthesized at	96
	various temperatures using stannous oxalate as	
	initiator	
3.37	Comparison of the TG curves of PEG of different	96
	molecular weights	

Figure		Page
3.38	Comparison of the TG curves of PGA and P(GA-b-PEG 200)	97
	of various compositions synthesized at 200°C using	
	aluminium triethyl as initiator	
3.39	Comparison of the TG curves of PGA and P(GA-b-PEG 200)	97
	99:1 synthesized at various temperatures using aluminium	
	triethyl as initiator	
3.40	Comparison of the TG curves of PGA and P(GA-b-PEG 200)	98
	97:3 synthesized at various temperatures using aluminium	<u></u>
	triethyl as initiator	
3.41	Comparison of the TG curves of PGA and P(GA-b-PEG 200)	98
	94:6 synthesized at various temperatures using aluminium	
	triethyl as initiator	
3.42	Comparison of the TG curves of PGA and P(GA-b-PEG 1500)	99
	of various compositions synthesized at 200°C using	
	aluminium triethyl as initiator	
3.43	Comparison of the TG curves of P(GA-b-PEG 1500) 99:1	99
	synthesized at various temperatures using aluminium	
	triethyl as initiator	
3.44	Comparison of the TG curves of PGA and P(GA-b-PEG 200)	100
	of various compositions synthesized at 200 °C using	
	stannous oxalate as initiator	
3.45	Comparison of the TG curves of P(GA-b-PEG 200) 99:1	100
	synthesized at various temperatures using stannous	
	oxalate as initiator	

Figure		Page
3.46	Comparison of the TG curves of P(GA-b-PEG 200) 97:3 synthesized at various temperatures using stannous	101
3.47	oxalate as initiator Comparison of the TG curves of P(GA-b-PEG 200) 94:6 synthesized at various temperatures using stannous	101
3.48	oxalate as initiator Comparison of the TG curves of PGA and P(GA-b-PEG 1500) of various compositions synthesized at 200° using	102
3.49	stannous oxalate as initiator Comparison of the TG curves of P(GA-b-PEG 1500) 99:1 synthesized at various temperatures using stannous	102
3.50	oxalate as initiator Comparison of the TG curves of P(GA-b-PEG 200) 99:1 and P(GA-b-PEG 1500) 99:1 synthesized at 200°C using	103
3.51	aluminium triethyl as initiator Comparison of the TG curves of P(GA-b-PEG 200) 99:1 and P(GA-b-PEG 1500) 99:1 synthesized at 200°C using	103
3 • 52	Reduced and inherent viscosity-concentration plots for a typical polymer sample	115
3.53	Comparison of the 'in vitro' weight loss profiles for the PGA and various P(GA-co-PEG) samples studied in this work after immersion in pH 7.40 phosphate buffer solution at 37°C for 6 weeks	(131 T)

Figure		Page
3.54	Comparison of the 'in vitro' weight loss profiles	133
	for the PGA synthesized in this work and commercial	
	PGA ('Dexon') sutures from a previous study [26]	
	after immersion in pH 7.40 phosphate buffer solution	
	at 37°C for 6 weeks	
4.1	Visualized fringed-micelle model of semi-crystalline PGA	157
4.2	Visualized fringed-micelle model of semi-crystalline	157
	P(GA-b-PEG 200), showing the matrix distribution of	
	the PEG segments	
4.3	Simple hydrolysis and solubilization of the PGA and PEG	160
	blocks respectively in a P(GA-b-PEG) copolymer	
4.4	The various physico-chemical processes involved in	161
	P(GA-b-PEG) absorption	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SCHEMES

Scheme		Page
2.1	Synthesis of block copolymers by adding different	12
	monomers	
2.2	Interconversions involved in the synthesis of	17
	poly(glycolic acid) (PGA)	
4 • 1	Postulated mechanism for the aluminium triethyl	142
	initiated ring-opening polymerisation of glycolide	
4.2	Postulated mechanism for the stannous oxalate	144
	initiated ring-opening polymerisation of glycolide	
4.3	Proposed mechanism of triblock copolymerisation of	147
	glycolide and PEG to give ABA poly(glycolic acid-b-	
	oxyethylene) using aluminium triethyl as initiator	
	Proposed mechanism of block copolymerisation of	150
	glycolide and PEG to give a probable mixture of	
	products using stannous oxalate as initiator	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

°C degree Celcius

mcal millicalories

g gram

cm wavenumber

hrs. hours

M molar concentration

IR infrared

min minute

mm Hg millimetres of mercury

mol. wt. molecular weight

T melting temperature

TG thermogravimetry

PGA poly(glycolic acid)

PEG poly(ethylene glycol)

P(GA-b-PEG) poly(glycolic acid-b-oxyethylene)

sec. second

Fig. Figure

W initial weight

W_ final weight

Copyright[©] by Chiang Mai University All rights reserved