IV. RESULTS

1. Preparation of genomic DNA

Genomic DNA was isolated from venous blood. The yield is approximately 280-950 μ g/ml. The OD260/OD280 ratio was between 1.70-1.95 .

2. Restriction endonuclease digestion of genomic DNA

10 μ g of genomic DNA was restricted with 40 units of Eco R I or Bgl II. The restriction pattern was shown in Figure 10.

3. Preparation of the α 2- and ζ -globin specific probes

- 3.1 The pEMBL $\alpha 2$ was completely restricted with Pst I, giving the 1.5 kb of $\alpha 2$ -globin specific probe separated from the pEMBL vector as shown in figure 11,lane B.
- 3.2 The pEMBL ζ was completely restricted with *Pst* I and *Hin* d III, giving the 400 bp of ζ -globin specific probe separated from the 4.1 kb of pEMBL vector as shown in figure 11,lane D.

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

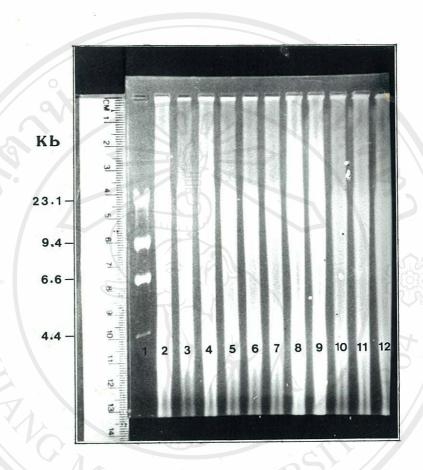


Figure 10. A pattern of genomic DNA digested with restriction endonuclease after running in 0.7 % agarose gel in 0.5xTBE and staining with EtBr solution (0.05 µg/ml)

lane 1 = λHin d III (DNA marker)

lane 2 = Normal DNA

lane 3 - 12 = Hb H disease DNA

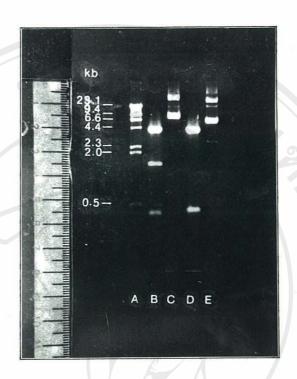


Figure 11.A pattern of the recombinant plasmids digested with restriction endonuclease after running in 0.65% agarose gel in 0.5xTBE and staining with EtBr solution $(0.05~\mu g/ml)$

lane A = λ/Hin d III (DNA marker)

lane B = 1.5 kb of the α 2-globin specific probe was isolated from *Pst* I-digested pEMBL α 2

lane D = 400 bp of the ζ -globin specific probe was isolated from the Pst I and Hin d III-digested pEMBL ζ

lane C,E = Undigested pEMBL α 2 and pEMBL ζ , respectively.

4. α Globin genes analysis

- 4.1 Digestion of normal human genomic DNA by EcoR I produces a DNA fragment 23 kb long, carrying both α globin genes, the α globin gene and the $\psi\zeta 1$ globin gene on the same fragment. The $\zeta 2$ globin gene is located on a 5-kb Eco R I fragment which does not carry the α globin genes (Fig. 8). When EcoRI digested DNA fragments are hybridized with ζ -globin specific probe, normal DNA produces two ζ -globin gene carrying fragments, one 23.0 kb and the other 5.0 kb long (Fig. 8). In cases of 28 patients with Hb H disease, DNA from 10 cases had two shortened Eco R I ζ -specific fragments of 19.0 and 15.0 kb in addition to 5.0 kb, which is characteristic of a single α gene deletion; - α haplotype and of two α genes deletion; -- haplotype,respectively. The other 18 cases had only one shortened Eco R I ζ -specific fragment of 15.0 kb in addition to 23.0 kb and 5.0 kb, which indicated the presence of -- haplotype and a nondeletion mutation; α T α haplotype (Fig. 12-15).
- 4.2 To characterize haplotypes involving deletion of 3.7 kb and 4.2 kb, DNA was digested with Bgl II and hybridized with α -globin specific probe. Normal DNA generated Bgl II α -specific fragments of 12.6 kb and 7.4 kb. The $-\alpha^3$.7 and $-\alpha^4$.2 haplotypes were associated with 16.0 kb and 7.4 kb Bgl II α -specific fragments, respectively (Fig. 9, 16-18). Among 10 cases of patients who have --/- α genotype as above, 7 cases carrying a $-\alpha^3$.7 haplotype and 3 cases carrying a $-\alpha^4$.2 haplotype were observed.

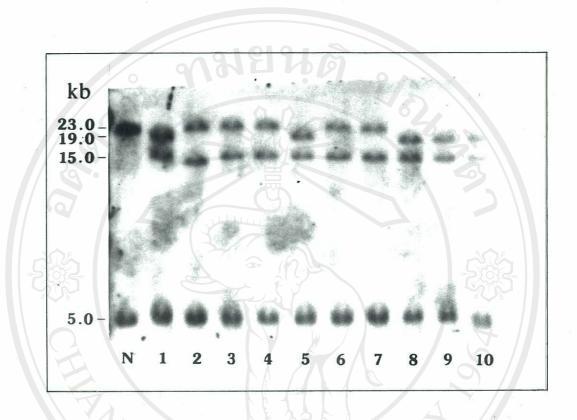


Figure 12. Autoradiogram of genomic DNA digested with EcoR I and hybridized with the ζ -globin specific probe.

N = Normal 1 and 8 = $-/-\alpha 4.2$ Mail University 5,9,and 10 = $-/-\alpha 3.7$ e s e r v e d 2,3,4,6,and 7 = $-/\alpha T\alpha$

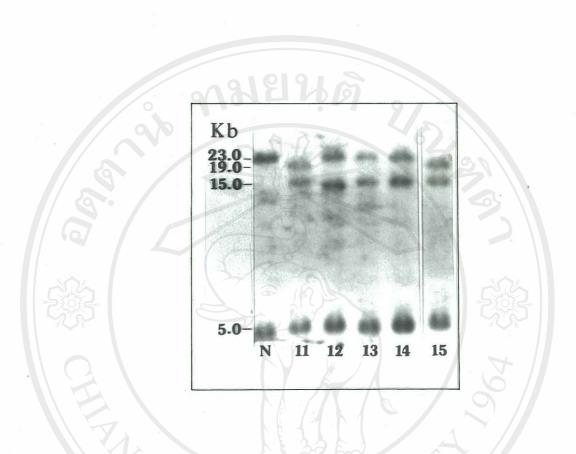


Figure 13. Autoradiogram of genomic DNA digested with Eco R I and hybridized with the ζ -globin specific probe.

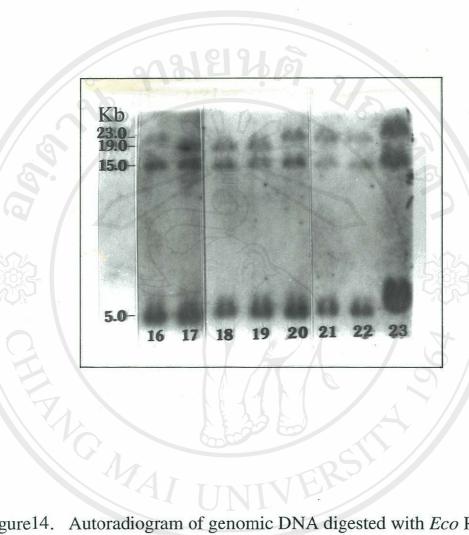


Figure 14. Autoradiogram of genomic DNA digested with Eco R I and hybridized with the ζ -globin specific probe.

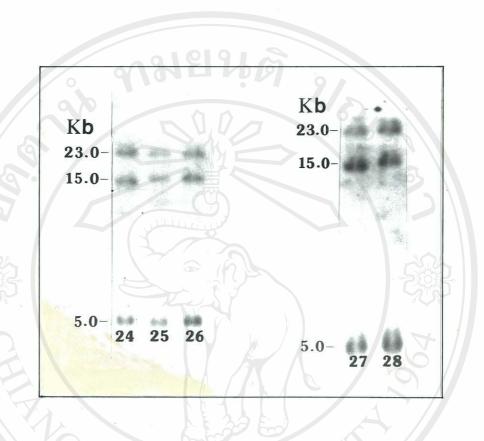


Figure 15. Autoradiogram of genomic DNA digested with Eco R I and hybridized with the ζ -globin specific probe.

Copyrigh 24,25,26,27,and $^{28} = ^{-/\alpha}T_{\alpha}$ 24 24,25,26,27,and 28 24 24,25,26,27,and 28 24 24,25,26,27,and 24 24 24,25,26,27,and 24 24,25,26,27,and 24 24,25,26,27,and 24,25,26,27,and 24 24 24,25,26,27,and 24,25,27,and 24,25,27,

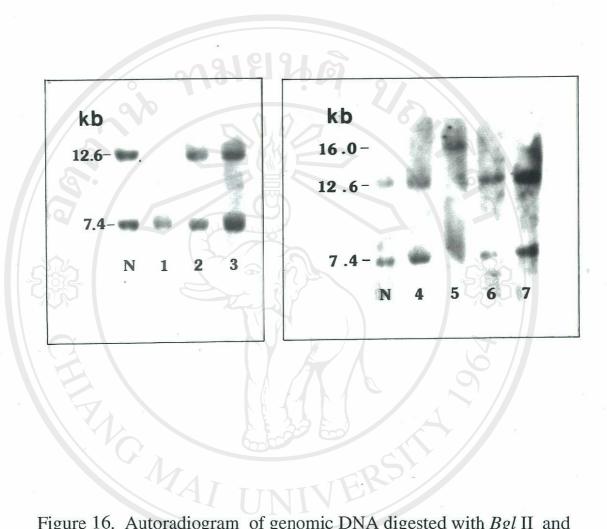


Figure 16. Autoradiogram of genomic DNA digested with Bgl II and hybridized with the α -globin specific probe.

Copyright
$$\frac{N}{1}$$
 = Normal $= \frac{1}{-\frac{1}{\alpha}}4.2$ Mai University $\frac{N}{1}$ = $\frac{1}{-\frac{1}{\alpha}}4.2$ A university $\frac{N}{1}$ = \frac

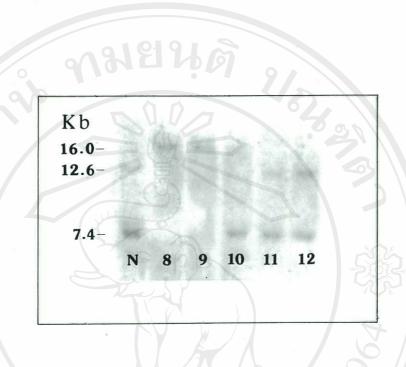


Figure 17. Autoradiogram of genomic DNA digested with Bgl II and hybridized with the α -globin specific probe.

N = Normal
8 and 9 =
$$--/-\alpha^3.7$$

10 = $--/-\alpha^4.2$ Mai University
11 and 12 = $--/\alpha^T\alpha$

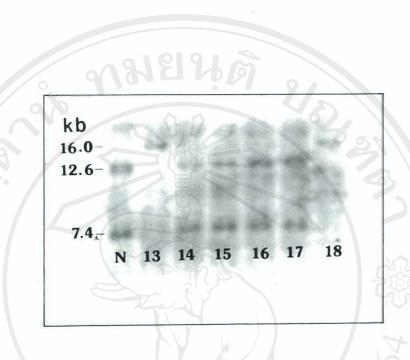


Figure 18. Autoradiogram of genomic DNA digested with Bgl II and hybridized with the α -globin specific probe.

N = Normal 13 and 18 = $--/-\alpha^3.7$ Copyright 14,15,16,and 17 = $--/\alpha^T\alpha$ University A | Reserve | Reserve

Table 3. Restriction fragment length(kb) detected with the α - and ζ -globin specific probes in various conditions.

Probe	Enzyme	αα/αα	/-α	/α ^T α
ζ	Eco R I	23.0	19.0*	23.0
		5.0	15.0*	15.0*
9			5.0	5.0
		湯		
α	$Bgl \ \Pi$	12.6	16.0*a	12.6
	3	7.4	7.4*b	7.4

- a observed in $-\alpha^{3.7}$ haplotype
- b observed in $-\alpha^{4.2}$ haplotype
- * abnormal band

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Table 4. Freguency of different genotypes observed in patients with Hb H disease.

No.(n=28)	Eco R I/ ζ	Bgl II/α	Genotype	%
7	19.0;15.0,5.0	16.0	/-α3.7	25
3	19.0,15.0,5.0	7.4	/-α ^{4.2}	11
18	23.0,15.0,5.0	12.6,7.4	$/\alpha^{T}\alpha$	64

