CONTENTS

	Page
Title page	i ,
Approval Sheet	ii
Acknowledgements	iii
Abstract	iv
List of Tables	S X
List of Figures	xiii
Abbreviations and symbols	xv
1 INTRODUCTION	1
1.1 General Introduction	
1.2 Application Technique	4
1.3 Solid Phase Extraction for Sample Preparation	5-
1.4 HPLC and its Relevant Applications	8
1.5 Scope and Aims of the Research Project	10
2 EXPERIMENTAL	12
2.1 Apparatus	. 12
2.2 Chemicals	14
2.3 Preparation of Solutions	15
2.3.1 LC Standard Solutions	15 7
2.4 Construction of Calibration Curves	0 15
2.4.1 Calibration Curve Range from 0.04 μg/ml to 2 μg/ml	University
2.4.2 Calibration Curve Range from 1 μg/ml	
to 5 µg/ml	16
2.4.3 Calibration Curve Range from 5 μg/ml	
to 30 µg/ml	16

viii

2.5 Preparation of the Mobile Phase	17
2.6 Investigation for the Optimum Wavelength	18
2.7 Determination of the Detector Linearity	18
2.8 Determination of the Detection Limit	19
2.9 Determination of Column Efficiency	19
2.10 Operation of HPLC	20
2.11Sampling Method	21
2.12 Accuracy	25
2.13 Precision	26
2.14 Sample Preparation	27
2.15 Confirmation Method	28
3 Results	29
3.1 Construction of Calibration Curves	29
3.2 Investigation for the Optimum Wavelength	34
3.3 Determination of the Detector Linearity	36
3.4 Determination of the Detection Limit and the Lower	
Limit of Determination	37
3.5 Determination of Column Efficiency	38
3.6 HPLC Optimized Conditions	41
3.7 Air Temperature During Sample Collection	42
3.8 Accuracy and Precision	0 0 43 111
3.9 Amounts of Carbaryl Found in Vegetable Samples	48
3.10 Peak Area Ratios at 270/220 nm	53
4 DISCUSSION AND CONCLUSIONS	e 1 ₅₅ e 0
4.1 Discussion	55
4.2 Conclusions	66
REFERENCES	70

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tab	le	Page
1.1	The top ten pesticides imported to Thailand in 1987.	2
1.2	Nomenclature system and relevant information for	
	carbaryl	3
1.3	Acute oral toxicity of carbaryl.	4
3.1	Peak heights and peak areas obtained in the concentration	
	range from 0.04 to 2 µg/ml using 50% acetonitrile/water	
	(v/v) as mobile phase.	29
3.2	Peak heights and peak areas obtained in the concentration	
	range from 1 to 5 µg/ml using 50% acetonitrile/water (v/v)	
	as mobile phase.	30
3.3	Peak heights and peak areas obtained in the concentration	
	range from 5 to 30 µg/ml using 50% acetonitrile/water (v/v)	
	as mobile phase.	31
3.4	Absorbance values of 0.2 µg/ml carbaryl in terms of	
	peak heights and peak areas at different wavelengths.	34
3.5	Absorbance values of 5 µg/ml carbaryl in terms of peak	
	heights and peak areas at different wavelengths.	35
3.6	Peak areas and corresponding amounts of carbaryl using	niversity
	50% acetonitrile/water (v/v) as mobile phase.	36
3.7	Detection limit of carbaryl obtained with 50% ACN/water	
	(v/v) as mobile phase with $\mu BondaPak$ C_{18} column	
	employing UV detector.	37
3.8	Chromatographic parameters obtained from 2 ug/ml of	

	carbaryl at flow rate of 1.30 ml/min with 50% ACN/water	
	(v/v) as mobile phase.	38
3.9	Chromatographic parameters obtained from 5 µg/ml of	
	carbaryl at flow rate of 1.50 ml/min with 50% ACN/water	
	(v/v) as mobile phase.	39
3.10	HPLC operating conditions for carbaryl determination.	41
3.11	Air temperatures during sample collection in Ban Sop Pao,	
	Lamphun Province.	42
3.12	Air temperatures during sample collection in Ban Pa Sao,	
	Chiang Mai Province.	42
3.13	Percentage recoveries of carbaryl at 1 μg/g and 5 μg/g	
	in kale.	43
3.14	Percentage recoveries of carbaryl at 1 μg/g and 5 μg/g	
	in edible rape.	44
3.15	Reproducibility of the HPLC employed at concentration	
	of 2 μg/ml of carbaryl standard at 220 nm.	45
3.16	Reproducibility of the HPLC employed at concentration	
	of 5 μg/ml of carbaryl standard at 220 nm.	46
3.17	Amounts of carbaryl found in kale at different time intervals.	48
3.18	Amounts of carbaryl found in edible rape at different time	
	intervals.	49
3.19	Peak area ratios at two different wavelengths for	
	confirmation of the analyte.	54
4.1	Coefficients of variation of the carbaryl analysis at	
	different experimental steps.	60
4.2	Methods of removing carbaryl remaining in guava and their	
	efficiency.	66

A1 Critical values of Q.	74
A2 Half-life of carbaryl by calculation.	78
A3 Codex maximum limits for carbaryl residues	80

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xiii

LIST OF FIGURES

Figu	re	Page
1.1	Knapsack sprayer.	5
1.2	Disposable extraction column.	6
1.3	Solid phase extraction steps.	7
2.1	Diagram of the study sites showing point of sampling.	22
2.2	Map showing the study sites.	23
2.3	First study site of kale in Ban Sop Pao, Lamphun Province.	24
2.4	Second study site of edible rape in Ban Pa Sao,	
	Chiang Mai Province.	24
3.1	Calibration curve of carbaryl standard from 0.04 to 2 ppm.	29
3.2	Calibration curve of carbaryl standard from 1 to 5 ppm.	30
3.3	Calibration curve of carbaryl standard from 5 to 30 ppm.	31
3.4	Chromatogram of standard carbaryl at concentration 0.4	
	μg/ml obtained with the μBondaPak C ₁₈ column employing	3
	50% (v/v) acetonitrile/water as mobile phase.	32
3.5	Chromatogram of standard carbaryl at concentration 2 µg/m	ıl
	obtained with the μBondaPak C ₁₈ column employing 50%	
	(v/v) acetonitrile/water as mobile phase.	32
3.6	Chromatogram of standard carbaryl at concentration 10 µg/	mhiversity
	obtained with the μBondaPak C ₁₈ column employing 50%	
	(v/v) acetonitrile/water as mobile phase.	e_{33} \vee e d
3.7	The UV spectrum of 0.2 µg/ml carbaryl.	34
3.8	The UV spectrum of 5 µg/ml carbaryl	35

3.9	Linearity curve of the UV detector for HPLC determination	
	of carbaryl.	36
3.10	Noise or background signal and lower limit of	
	determination.	37
3.11	Chromatogram of carbaryl showing calculation of the	
	number of theoretical plates, N.	40
3.12	Reproducibility of the HPLC system with 2 and 5 µg/ml	
	of carbaryl standards.	47
3.13	Amounts of carbaryl found in kale at different time intervals.	50
3.14	Amounts of carbaryl found in edible rape at different time	
	intervals.	51
3.15	Variation of carbaryl amounts found in edible rape on the	
	day directly after spraying.	52
3.16	Chromatogram of standard carbaryl at 220 nm and 270 nm	
	obtained with the µBondaPak C18 column employing	
	50% (v/v) acetonitrile/water as mobile phase.	53
4.1	First order plot between ln[carbaryl] and time.	63

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

ACN acetonitrile

ADI acceptable daily intake

A.R. analytical reagent

°C degrees Celsius

conc. concentration

cm centimeter

cm³ cubic centimeter

cm³/min cubic centimeter per minute

Cv coefficient of variation: relative standard

deviation (RSD)

e.g. for example

ε⁰ eluting solvent strength

Fig. figure g gram

g/l gram per liter

H (HETP) height equivalent to a theoretical plate

HPLC high performance liquid chromatography

i.e. that is

kg kilogram

l liter

L column length

LD₅₀ median lethal dose

LC₅₀ median lethal concentration

m meter

mg milligram

mg/l milligram per liter

mg/kg milligram per kilogram

min minute

ml milliliter

ml/min milliliter per minute

mm Hg millimeters of mercury

mmol millimole

MRL maximum residue limit

N plate number

ND not detected

nm nanometer

ppb parts per billion

ppm parts per million

psi pounds per square inch

r correlation coefficient

RP-HPLC reversed phase high performance liquid

chromatography

SD standard deviation

sec second

SPE solid phase extraction

t_R retention time

μ micron

μg/g microgram per gram

xvii

μg/ml microgram per milliliter μl microliter micrometer μm microvolt μV UV ultraviolet volume per volume v/vW base-line peak width the peak width at half-height W½ **WHO** World Health Organization $\bar{\mathbf{x}}$ mean value [] concentration

E Chai

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved