CONTENTS

	Page		
Title Page	· i	ŧ	
Approval Sheet	ii		
Acknowledgements	iii		
Abstract	v		
List of Tables	xi		
List of Figures	xii		
Abbreviations and Symbols	xiv		
1. INTRODUCTION	1		
1.1 Background Information	1		
1.2 Paraquat	2		
1.2.1 Physical and Chemical Properties	2		
1.2.2 Use and Mechanism of the Herbicidal			
Effect	4		
1.2.3 Photochemical Degradation of Paraquat			
on Plant Surfaces	4		
1.2.4 Toxicity of Paraquat	6		
1.2.5 Evaluation of Risks for Human			
Health and Effects on the Environmen	t 6		
1.2.6 Analytical Methods	9		
1.3 Spectrophotometer	9		
1.4 Solid Phase Extraction [SPE]	9	1	
1.5 Aims and Scope of the Research	13		
2. EXPERIMENTAL	17		

Page

	2.1 Apparatus	17
	2.2 Chemicals and Materials	17
	2.3 Preparation of Standard Solutions	18
	2.4 Preparation of Reagents	19
	2.5 Spectrophotometric Conditions	20
	2.6 Study Site	20
	2.7 Application of Paraguat	24
	2.8 Sample Collection	24
	2.9 Sample Preparation	25
	2.10 Sample Analysis	26
	2.11 Determination of the Weed's Dry Weight	31
	2.12 Standard Calibration Curve Construction	31
	2.13 Stability of Paraquat in Weed Extracting	
	Water	31
	2.14 Determination of the Linear Range for	
	the Standard Paraquat	31
	2.15 Percentage Recovery	32
	2.16 Detection Limit	32
	2.17 Limit of Determination	33
	2.18 Stability of the Paraquat Radical Cation	33
	2.19 Absorption of the Bakerbond cyano-spe and	2
	the Paraquat Free Weed Extracting Water	33
	2.20 Repeatability of Absorption Measurement	34
	2.21 Calculation	34
3.	RESULTS rights reser	√37 €
4.	DISCUSSION AND CONCLUSIONS	56
	REFERENCES	71
	APPENDIX	76
	VITA	78
		, 0

LIST OF TABLES

Table	์ พมถูนย์	Page
1.1 Analy	tical method for paraquat determination	.10
1.2 Solid	phase extraction advantages	15
3.1 Data	of application of paraquat	38
3.2 Micro	climate data	38
3.3 Stabi	lity of 1 ug/ml paraquat in weed	
extra	cting water	40
3.4 Recov	ery data of paraquat	40
3.5 Pre-a	pplication data on weed samples	46
3.6 Post-	application data on the treate	
weed	samples	47
3.7 Amoun	ts of paraquat in different trials	52
3.8 Amoun	ts of deposited paraquat in mg/kg on the	
treat	ed weed samples	53
3.9 Amoun	ts of deposited paraquat in g/ha on the	
treat	ed weed samples	53
Al Vario	us trade names of paraquat available in	
Thail	and by Chiang Mai Univ	76'Sity

LIST OF FIGURES

Figu	ire	Page						
1.1	Synthesis of paraquat	3						
1.2	Basic mechanism of paraquat toxicity	. 5						
1.3	Photochemical degradation of paraquat	7						
1.4	Block diagram of a double-beam spectrophotomete	r 12						
1.5	Solid phase extraction process	14						
2.1	Map showing location of the study site	21						
2.2	B Diagram of the study plots and zones of collecting							
	weed samples	22						
2.3	Photograph of the study site	23						
2.4	The cyano-spe sample preparation flow chart	27						
2.5	Drawing the baseline of the paraquat absorption							
9	spectrum	28						
2.6	Sample analysis flow chart	29						
2.7	Analysis of the deposited paraquat flow chart	30						
3.1	Standard paraquat calibration curves	39						
3.2	Linearity curve for the standard paraquat catio	n 41						
3.3	Stability of the paraquat radical cation	43						
3.4	UV - VIS spectrum of distilled water passing							
	throug the Bakerbond cyano-spe	V44rsit						
3.5	UV - VIS spectrum of the paraquat free weed							
	extracting water	45						
3.6	The amounts of deposited paraquat in mg/kg							
	found at different time intervals	54						

D	2	a	۵
~	-	LI	_

3.7	The	amoui	nts	of	depo	sited	paraquat	in	g/ha	
	four	nd at	dif	fer	rent	time	interval	s		55

4.1 UV - VIS spectrum of the paraquat radical cation 62

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

ADI acceptable daily intake

⁰C degrees Celsius

CV coefficient of variation

cm centimeter

E⁰ standard redox potential

F farmer's practice

FAO Food and Agriculture Organization

g gram

GC gas chromatography

GC/MS gas chromatography / mass spectrometry

ha hectare

hr hour

HPLC high performance liquid chromatography

kg kilogram

km kilometer

l liter

L trial L

LD₅₀ 50% lethal dose

M molar; molarity

m meter

m¹ square meter

ml milliliter

mPa millipascal

mm

millimeter

mins

minutes

MRL

maximum residue limit

nm

R

nanometer
recommended practice

RIA

SL

S/N

signal to noise ratio

SPE

solid phase extraction

uq

microgram

ul

microliter

UV

ultraviolet

U.S.EPA

United States Environmental Protection

Agency

V

trial V

VIS

visible

volt

weight

WHO

World Health Organization

U.S.dollars