CONTENTS

	Page
Content	i 🛦
Title Page	Ti.
Approval Sheet	iii
Acknowledgments	
Abstract	V
List of Tables	xii
List of figures	xiii
Abbreviations and Symbols	XV
Chapter 1. Introduction	
1.1. Pesticides and Its Impact on the Environment	1
1.2. Carbaryl and Environment	2
1.3. Biodegradation of Pesticides and Its Importance	4
1.4. Improvement of Microorganisms for Higher Biodegra-	
	6
dation of Pesticides	
1.5. Literature Review: Biodegradation of Carbaryl and	7
Carbamate Insecticides	•
1.6. Research Scope and Objectives	10
Chapter 2. Materials and Methods	
2.1. Apparatus	12
2.2. Chemicals	13
	14
2.3. Methods	14
2.3.1. Preparation of Minimum Minerals (MM) Media	15
2.3.2. Bacterial Culture	15
2 3 3 Biodegradation of Carbaryl	13

	15
2.3.3.1. Temperature	15
2.3.3.2. pH	16
2.3.3.3. Nutrients	16
2.3.3.4. Enrichment	16
2.3.3.5. Cross-feeding	217
2.3.3.6. Bacterial Mutation	
2.4. Bacterial Identification Test	18
2.5. DNA Isolation and Preparation	18
2.6. HPLC Condition for Analysis of Carbaryl	19
2.7. Preparation of Mobile Phase	20
2.8. Preparation of Standard Curve	20
2.9. Confirmation Analysis	21
3.0. Recovery Analysis	21
Chapter 3. Results	
3.1. Optimization of Biodegradation of Carbaryl	22
3.1.1. pH	22
3.1.2. Temperature	26
3.1.3. Nutrients	28
3.2. Carbaryl Enriched Bacteria	31
	31
3.3. Cross-feeding	35
3.4. Bacterial Mutation	40
3.5. Bacterial Identification	43
3.6. DNA Preparation and Isolation	-44
3.7. Confirmation of Carbaryl	45
3.8. Recovery Analysis of Carbaryl	10

Chapter 4. Discussion	
4.1. Optimization of Biodegradation	47
4.1.1. pH	47
4.1.2. Temperature	48
4.1.3. Nutrients	0 49
4.2. Bacterial Enrichment	50
4.3. Cross-feeding	51
4.4. Bacterial Mutation	52
4.5. Bacterial Identification	53
4.6. Isolation of DNA	54
Chapter 5. Conclusion	55
Chapter 6. Recommendations	56
	57
References	64
Appendix	
Chamian Iva Vitae	84

List of Tables

	Page
Table.	38
Table 1. Carbaryl degradation with UV-60 seconds bacteria	50
Table 2. Results of different identification tests of selected	741
bacterial strain of isolate-5	
Table 3. Acid and gas production test with different sugars	.42
Table 4. Data for confirmation analysis of carbaryl	44
Table 5. Data for recovery analysis of carbaryl	45
Table 6. Repetition of biodegradation study with U3 strain at pH 6.8	
at 37 and 34 °C	53
Table A. 1. Effect of pH on bacterial degradation of carbaryl	77
Table A.2. Effect of temperature on bacteria in degradation of	
	78
carbaryl in minimum minerals media	78
Table A.3. Bacterial degradation of carbaryl in nutrient broth	,0
Table A.4. Bacterial degradation of carbaryl in minimum minerals	
media with yeast-extract	79
Table A.5. Bacterial degradation of carbaryl in MM with vit. B1, B6	
and nicotinamide	79
Table A.6. Degradation of carbaryl in minimum minerals media with	
carbaryl enriched bacteria	80
Table A.7. Bacterial degradation of carbaryl in presence of carbofuran	
and carbosulfan	80
Table A. 8. Bacterial growth in MM with 1-naphthol and carbofuran	80
Table A. 8. Bacterial growth in 19212 than 1	81

xiii

List of Figures

	Page
Figure	
Figure 1. Carbaryl degradation in MM medium at pH 6.0, 6.5,	
6.8 and 7.0 at 34 °C	23
Figure 2. Carbaryl degradation in MM medium at pH 7.2, 7.5,	
8.0 and 8.5 at 34 °C	25
Figure 3. Carbaryl degradation in MM medium at 30 °C, 34 °C,	25
37 °C and 41 °C at pH 6.8	27
Figure 4. Carbaryl degradation in nutrient broth at pH 6.8	
at 34 °C	29
Figure 5. Carbaryl degradation in MM with yeast-extract at pH 6.8	
	29
at 34 oC	
Figure 6. Carbaryl degradation in MM in presence of vit.	30
at pH 6.8 at 34 °C	30
Figure 7. Carbaryl degradation in MM with enriched bacteria	22
at pH 6.8 at 34 °C	32
Figure 8. Carbaryl degradation in MM with carbofuran at	
at pH 6.8 at 34 °C	33
Figure 9. Carbaryl degradation in MM with carbosulfan at pH 6.8	
at 34 °C	33
Figure 10. Degradation of 1-naphthol in MM Medium at pH 6.8	
at 34 °C	34
Figure 11. Effect of UV-radiation on selected bacterial strain	36
Figure 12A. Bacterial strain with UV-10 seconds	37
Figure 12B. Bacterial strain with UV- 30 seconds	37

TTI CO records	37
Figure 12C. Bacterial strain with UV-60 seconds	05
Figure 12D. Bacterial strain with UV-120 seconds	37
Figure 13. DNA band of the selected bacterial strain	43
Figure 13. DIVA vand of and	
Figure 14. The peak of carbaryl and its intermediate	16
product 1- naphthol	70
Figure A.1. Standard curve of carbaryl	

Abbreviations and Symbols

% percent

oC degree celsius

μl microliter

cfu colony forming unit

cm centimeter

et al and others

g gram

HPLC High Performance Liquid Chromatography

ml milliliter

M Molar

nm nanometer

rpm revolution per minute

UV ultraviolet