CONTENTS

		Page
		. age
ACKN	IOWLEDGEMENTS	ifi
	RACT (ENGLISH)	iv
	RACT (THAI)	v
	OF TABLES	xi
	OF FIGURES	xiv
	REVIATIONS	XİX
יוםכות	LEVIATIONS SALES	AIA
CHAI	PTER 1 INTRODUCTION	1
1.1	Flow Injection Analysis (FIA)	1
1. 1	1.1.1 General and Principle	1
	1.1.2 Basic Components of an FIA System	3
1.2	Phosphorus/Phosphate	4
*	1.2.1 Spectrophotometry	5
	1.2.2 FIA Method	6
1.3	Nitrates and Nitrites	6
	1.3.1 Colorimetric Method	8
	1.3.2 Ion Chromatography Method	9
	1.3.3 FIA Method	9
1.4	Chromium	9
	1.4.1 Diphenylcarbazide Method	10
	1.4.2 Chromate Method	10
	1.4.3 Atomic Absorption Method-Chelation Extraction	11
4 =	1.4.4 FIA Method	11
1.5	Calcium	12
	1.5.1 Complexometric Method	13
	1.5.2 Atomic Absorption Method-Direct 1.5.3 FIA Method	14 14
1.6	The state of the s	14
1.0	Alitis of the Thesis	14
CHA	PTER 2 EXPERIMENTAL, RESULTS AND DISCUSSION	15
2.1	Instruments, Apparatus and Chemicals	15
۷. ۱	2.1.1 Instruments and Apparatus	15
	2.1.2 Chemicals	15
2.2	Solutions	16
2.3	Determination of Phosphate by Flow Injection Fluorometric Method	20
	2.3.1 Preliminary Studies of the Fluorescence Spectra Scanning	20
	2.3.2 Manifold	21
	2.3.3 Optimization of Flow Injection Determination of Phosphate	21
	2.3.3.1 Effect of H ₂ SO ₄ Concentration	22
	2.3.3.2 Effect of Ammonium Molybdate Concentration	23
	2.3.3.3 Effect of Rhodamine B Concentration	24
	2.3.3.4 Effect of PVA Concentration	25

				Page
		2.3.3.5	Effect of Flow Rate of the two Streams	٠.
			(CS and RS)	26
		2.3.3.6	Effect of Reaction Coil Length	27
			Effect of Sample Volume	28
		2.3.3.8	Summary of Condition Used	29
		2.3.3.9	Calibration Curve and Detection Limit	29
			Precision	31
		2.3.3.11	Interference Studies	31
		2.3.3.12	The Effect of Suspended Solids (SS)	36
		2.3.3.13	Determination of Phosphate in Natural Water	07
			Sample	37
			Standard Addition FIA	39
2.4			etermination of Nitrite and Nitrate	41
			on Spectrum	41
	2.4.2	Manifold		41
	2.4.3	Optimiz	ation of Flow Injection Determination of Nitrite	43
		2.4.3.1	Effect of NED Concentration	43
		2.4.3.2	Effect of Sulfanilamide Concentration	43
		2.4.3.3	Effect of H ₃ PO ₄ Acid Solution Concentration	44
		2.4.3.4		44
		2.4.3.5		45
		2.4.3.6		45
		2.4.3.7	Summary of Condition Used	46
			Calibration Curve and Detection Limit	46
			Precision	48
		2.4.3.10	Interference Studies	48
	2.4.4	Sequen	tial Flow Injection Determination of Nitrite and Nitrate	49
		2.4.4.1	Effect of Cd-Column Length	49
		2.4.4.2	Effect of Cadmium Granule Size	50
		2.4.4.3	Effect of Flow Rate Passing Through Cd-Column	51
		2.4.4.4		52
		2.4.4.5	Summary of Conditions Used	53
			Calibration Curve and Detection Limit	54
		2.4.4.7	Interference Studies	55 57
		2.4.4.8	Effect of Cd-Column for Nitrite Determination	57
		2.4.4.9	A study for Nitrite and Nitrate Mixture	58
		2.4.4.10	Determination of Nitrite and Nitrate in a	5 0
			Water Sample	59
2.5			of Chromium	60
			tion spectra of Metal-DPC Complexes	60 64
		Manifol		64
	2.5.3		ration of FI Determination of Chromium(VI)	65
		2.5.3.1		<u>c</u> e
			Streams	65 66
			Effect of DPC Concentration	66 67
		2.5.3.3	Effect of Acid Concentration of DPC Solution	67

				rage
		2.5.3.4	Effect of the GBC Length	68
		2.5.3.5	Effect of the RC Length	69
		2.5.3.6	Summary of Conditions Used for Cr(VI) Determination	70
		2.5.3.7	Calibration Curve and Detection Limit	70
		2.5.3.8	Precision	72
,		2.5.3.9	Interference Studies	73
2.	5.4	Optimiza	tion of Sequential Determination of	
			m(VI) and Chromium(III)	75
		2.5.4.1	Effect of Cerium(IV) Concentration	75
		2.5.4.2	Effect of H ₂ SO ₄ Acid Concentration in the Reagent R2	76
		2.5.4.3	Effect of DPC Concentration	77
		2.5.4.4	Effect of the RC1 Length	78
•		2.5.4.5	Effect of the Aqueous Methanol Concentration	79
		2.5.4.6	Effect of pH in a Mixture of Chromium(VI) and	
			Chromium(III)	80
		2.5.4.7	Effect of Loading Time on Calibration Curve	81
		2.5.4.8	Summary of the Conditions Used	83
		2.5.4.9	Calibration Curve and Detection Limit	84
			Precision	86
		2.5.4.11	Determination of Chromium(VI) and Chromium(III)	
			in Sample Drinking Water	
	. 0	86		
		nination of		87
2.	6.1		ation of Calcium by Using Murexide	87
		2.6,1.1	Absorption Spectra	87
		2.6.1.2		87
		2.6.1.3		88
		2.6.1.4		89
		2.6.1.5	Effect of Flow Rates of Murexide and	00
		2616	Ethylenediamine Buffer Streams Effect of LED Color	90
		2.6.1.6 2.6.1.7		91
2	6.2		Effect of pH ation of Calcium by Using Calmagite	92 97
۷.	0.2	2.6.2.1	Absorption Spectra	97
		2.6.2.2		98
		2.6.2.3		98
		2.6.2.4		99
		2.6.2.5		100
		2.6.2.6	0 -	101
		2.6.2.7	Effect of the RC Length	102
		2.6.2.8	Effect of Flow Rate	103
		2.6.2.9	Summary of the Conditions Used	105
			Calibration Curve and Detection Limit	105
			Precision	107
		2.6.2.12	Application of the Procedure for the Determination	
			of Hardness Water Samples	107

	Page
CHAPTER 3 CONCLUSIONS	109
REFERENCES	110
APPENDICES	113
APPENDIX A	114
APPENDIX B	115
APPENDIX C APPENDIX D	116
APPENDIX E	119
APPENDIX F	120 122
APPENDIX G	123
APPENDIX H	125
APPENDIX I	126
APPENDIX J	127
VITA	129

LIST OF TABLE

Table		Page
1.1	Some industrially important chromium compounds	10
1.2	Classification of water by hardness content	12
1.3	Maximum hardness levels accepted by industry as a raw water source	
2.1	Effect of H ₂ SO ₄ concentration on peak height; mean of	
	triplicate injections.	22
2.2	Effect of ammonium molybdate concentration on peak height;	
	mean of triplicate injections.	23
2.3	Effect of RB concentration on peak height; mean of triplicate	
	injections.	24
2.4	Effect of PVA concentration on peak height; mean of triplicate	
	injections.	25
2.5	Effect of flow rates of CS and RS on peak height; mean of	
	triplicate injections.	26
2.6	Effect of reaction coil length on peak height; mean of triplicate	
	injections.	27
2.7	Effect of sample volume on peak height; mean of triplicate injections.	28
2.8	Conditions used for the determination of phosphate	29
2.9	Calibration curve for phosphate.	29
2.10	Precision study using 80 μg PO ₄ 3-/l, n = 12	31
2.11	Effect of interference for phosphate concentration of 50 μg/l;	
	mean of triplicate injections.	31
2.12	Summary of the interference effect for phosphate determination.	35
2.13	Effect of SS (kaolin) on peak height; mean of triplicate injections.	36
2.14	Determination of phosphate in natural water.	38
2.15	The phosphate contents found by using FIA standard addition	
	method; mean of triplicate injections.	40
2.16	Effect of NED concentration on peak height; mean of triplicate	
	injections.	43
2.17	Effect of sulfanilamide concentration on peak height; mean of	
	triplicate injections.	43
2.18	Effect of H ₃ PO ₄ acid solution concentration on peak height;	
	mean of triplicate injections.	44
2.19	Effect of flow rate reagent stream on peak height; mean of	
	triplicate injections.	44
2.20	Effect of GBC length on peak height; mean of triplicate injections.	45
2.21	Effect of sample volume on peak height; mean of triplicate injections.	46
2.22	Conditions used for the determination of nitrite.	46
2.23	Calibration curve of nitrite; mean of triplicate injections.	46
2.24	Precision study of 50 μ g NO ₂ /I, n = 15.	48
2.25	Effect of interfering ions for nitrite concentration of 0.05 mg/l; mean	
	of triplicate injections.	48
2.26	Effect of Cd-column length on peak height; mean of triplicate	
	injections.	50

Table		Page
2.27	Effect of cadmium granule size on peak height; mean of	
	triplicate injections.	50
2.28	Effect of flow rate passing through Cd-column on peak height;	
	mean of triplicate injections.	51
2.29	Effect of regenerating time and precision of the Cd-column on	
	peak height; mean of the first 30 replicate injections.	52
2.30	Effect of regenerating efficiency and precision of the Cd-column	==
	on peak height; mean of the first 30 replicate injections of nitrate.	53
2.31	Condition used for the determination of nitrite and nitrate.	53
2.32	Calibration curve for nitrite; mean of triplicate injections.	54
•	 Effect of interference cations for nitrate concentration of 200 μg/l. 	55
•	 Effect of interfering anions for nitrate concentration of 100 μg/l. 	56
2.34	Summary of the interference effect for nitrate determination.	57
2.35	Effect of Cd-column for nitrite determination peak height;	
	mean of triplicate injections.	57
2.36	A study for nitrite mixture on peak height; mean of	
	triplicate injections.	58
2.37	FIA determination of nitrite and nitrate in spiked water samples.	59
2.38	Molar absorptivity study of chromium(VI)-DPC complex.	61
2.39	Effect of flow rates of methanol, sample and R1 stream on	
	peak height, mean of duplicate injections.	65
2.40	Effect of DPC concentration on peak height; mean of triplicate	
	injections.	66
2.41	Effect of H ₂ SO ₄ concentration in DPC solution on peak height;	
	mean of triplicate injections.	67
2.42	Effect of HNO ₃ concentration in DPC solution on peak height;	
	mean of triplicate injections.	68
2.43	Effect of the GBC length on peak height; mean of triplicate injections.	69
2.44	Effect of RC length on peak height; mean of duplicate injections.	69
2.45	Condition used for the determination of chromium(VI).	70
2.46	Calibration curve for chromium(VI); mean of triplicate injections.	71
2.47	Precision study using 0.1 mg Cr^{6+}/l , n = 20.	72
2.48	Effect of interference study for chromium(VI) concentration of	
	0.10 mg/l; mean of triplicate injections.	73
2.49	Summary of the interference effect for the 0.1 mg Cr ⁶⁺ /l.	74
2.50	Effect of cerium(IV) concentration on peak height; mean	
	of triplicate injections.	75
2.51	Effect of H ₂ SO ₄ acid concentration in the reagent R2 on peak	
	height; mean of triplicate injections.	76
2.52	Effect of DPC concentration on peak height; mean of	
	triplicate injections.	77
2.53	Effect of the RC1 length on peak height; mean of triplicate injections.	78

Table		Page
2.54	Effect of the aqueous methanol concentration on peak height; mean of	
0.55	triplicate injections.	79
2.55	Effect of pH in a mixture of 0.3 mg Cr ⁶⁺ /l and 0.3 mg Cr ³⁺ /l	
0.50	solution; mean of triplicate injections.	80
2.56	Different loading time; mean of triplicate injections	81
2.57	Two sets of experiments ; a single standard solution and	00
0.50	a constant loading time	82
2.58	Condition for the sequential determination of chromium(VI) and	00
0.50	chromium(III).	83
2.59	Calibration curve Cr(VI) and Cr(III) standard solution; mean	0.4
0.60	of triplicate injections.	84
2.60 2.61	Precision study using 0.1 mg Cr ⁸⁺ /l, (n= 20) and 0.4 mg Cr ³⁺ /l (n=20) Determination of Cr(VI) and Cr(III) in drinking water samples;	86
	mean of triplicate injections.	86
2.62	Effect of murexide concentration on peak height; mean of	
	triplicate injections.	89
2.63	Effect of sample volume on peak height; mean of triplicate	
	injections.	90
2.64	Effects of flow rates of murexide and ethylenediamine buffer streams	
	on peak height; mean of triplicate injections.	91
2.65	Effect of LED color on peak height; mean of triplicate injections.	92
2.6 6	Effect of pH on absorption maxima (λ) and absorbance (A).	93
2.67	Calibration curves: (a) Ca(II)-murexide and (b) Mg(II)-murexide	
	complexes of various pHs; mean of triplicate injections.	94
2.68	Effect of the amount of EDTA on peak height; mean of	
	triplicate injections.	99
2.69	Effect of calmagite concentration on peak height; mean of	
	triplicate injections.	100
2.70	Effect of MgCl ₂ concentration on peak height; mean of	
	triplicate injections.	101
2.71	Effect of sample volume on peak height; mean of triplicate injections.	102
2.72	Effect of the RC length on peak height; mean of triplicate injections.	103
2.73	Effect of flow rate on peak height; mean of triplicate injections.	104
2.74	Conditions used for the determination of calcium by using calmagite.	105
2.75	The calibration curve for Ca; mean of triplicate injections.	105
2.76	Precision study of 250 mg/l as CaCO ₃ ; n = 12.	107
2.77	Application of the procedure for the determination of hardness	
	of water samples.	107
E.1	The determination of injection valve dead volume, (H° = 6.20 mV).	121

LIST OF FIGURES

Figure		Page
1.1	 (a) The simplest single-line FIA manifold utilizing a carrier stream of reagent; S: the injection port, D: the flow cell and W: waste. (b) The analog output has the form of a peak, the recording starting at S (time of injection to); H: the peak height, W: the peak width at a selected level, A: the peak area, T: the residence time corresponding to the peak height measurement, and t_b: the peak width at the baseline. 	1
1.2	Dispersion, D in the system defined as the ratio between the original concentration, C° and the concentration of the dispersed species, C ^{mex} .	2
1.3	Response curve upon dispersion as function of (a) injection sample volume, with sample volumes of 60,110, 200, 400 and 800 μl, (b) the tube length; L is given in centimeters and (c) flow rate	
1.4	at various reactor lengths with a constant tube diameter. General arrangement of an FIA system, showing its essential components; propelling unit (peristattic pump or gas-pressure unit), injection system, reaction zone (A: straight open tube, B: coiled tube, C: mixing chamber, D: single-bead string reactor and E: knitted reactor). Adopted from Vancarcal and	2
1.5	luque de Castro and Ruzicka and Hansen Representation of the operationally defined components of total	3
	dissolved phosphorus.	4
1.6	Chemical structure of Rhodamine B.	6
1.7	Nitrogen speciation in natural waters. Concentrations are expressed as mg nitrogen per litter. Values are quoted as ranges typically encounted in a variety of waters. The values in brackets represent	
	indicative values at or above which problems have been known to occure, depending on a range of other factors.	7
1.8	Main biological process involving nitrogen.	7 7
1.9	Absorption spectra of (1) dichromate (in M H ₂ SO ₄) and (2) chromate (in ammonical medium).	' 11
1.10	Chemical structure of (a) Murexide, (b) Eriochome black T and (c) Calmagite.	13
1.11	Manifold for the simultaneous determination of calcium and sum of calcium and magnesium (hardness); ebt = Eriochrome black T, buffer = NH ₄ Cl/NH ₃ buffer solution, Vi = injection valve, p = pump, L = reaction length, D = detector,	
2.1	W = waste, S1 and S2 = selecting valves. Fluorescence spectra of RB and ion associate formed between molybdophosphate and RB. Spectra: (a) absorption and (b) emission: (1) the RB solution (0.8x10 ⁻⁴ %(w/v) RB + 0.1 M H ₂ SO ₄ + 8x10 ⁻³ %(w/v) PVA), (2) 0.25 %(w/v) molybdate in the RB solution and (3) 20 μg PO ₄ ³ /l together with molybdate (0.25 % (w/v)) in the	14
	RB solution.	20

Figur	e	Page
2.2	Flow diagram of phosphate fluorimetric determination; CS: carrier solution (H ₂ O), RS: reagent solution (ammonium molybdate + H ₂ SO ₄ + RB + PVA), P: peristaltic pump, I: injection valve, S: sample, RC: reaction coil, FC: flow cell cassette (quartz cell), SF: spectrofluorometric detector	
2.3	(Jasco 821-FP) and W: waste. Effect of H ₂ SO ₄ concentration on peak height; (1) 0.4, (2) 0.6,	21
2.4	(3) 0.8 and (4) 1.0 M H ₂ SO ₄ . Effect of ammonium molybdate concentration on peak height; Ammonium molybdate concentrations: (1) 0.5, (2) 1,	22
2.5	(3) 2 and (4) 4% (w/v). Effect of RB concentration on peak height; RB concentrations:	23
2.6	(1) 0.5x10 ⁻⁴ , (2) 1x10 ⁻⁴ , (3) 3x10 ⁻⁴ , (4) 5x10 ⁻⁴ and (5) 7x10 ⁻⁴ %(w/v). Effect of PVA concentration on peak height; PVA concentrations:	24
2.7	(1) 0, (2) 0.005, (3) 0.01, (4) 0.03,(5) 0.05 and (6) 0.07 %(w/v). Effect of flow rate of the two streams on peak height; Flow rates:	25
2.8	(1) 0.5, (2) 0.7, (3) 1.0 and (4) 1.5 ml/min. Effect of reaction coil length on peak height; Reaction coil lengths:	26
2.9	(1) 50, (2) 100, (3) 150 and (4) 200 cm. Effect of sample volume on peak height; Sample volumes:	27
2.10	(1) 123, (2) 223, (3) 323, (4) 423, (5) 523 and (6) 623 µl. FIA signals for the determination of phosphate. S1, S2 and S3:	28
2.11	real samples 1, 2 and 3 respectively.	30
2.12	Calibration curve for phosphate (n = 3). Effect of SS on peak height; Kaolin concentrations: (1) 0, (2) 5,	30
2.13	(3) 10, (4) 50, (5) 100, (6) 150 and (7) 200 mg/l. Comparison of phosphate concentrations in natural water samples determining by the normal-colorimetric FIA method and	37
2.14	fluorimetric-FIA methods. Standard addition curve of the FIA phosphate determination	39
2.15	(data of the sample No.4 in Table 2.15). Absorption spectrum of the azo dye product nitrite with reagent	40
2.16	(versus reagent blank). Flow diagram; R: coloring reagent (sulfanilamide and NED in phosphoric acid solution), S: sample, I: injection valve, P1: peristaltic pump, P2: aquarium pump, GBC: glass bead column, V: three way valve, W: waste, and Cd-column	41
2.17	(Copperized cadmium column or cadmium reduction column). Effect of flow rate of reagent stream on peak height.	42 45
2.18	FIA signals of nitrite standards.	47
2.19 2.20	Calibration curve for nitrite standards (n = 3). Effect of cadmium granule size on peak height; Cadmium granule sizes: (1) small (<16 mesh), (2) medium	47
2.21	(16 - 9 mesh) and (3) large (<9 mesh). Effect of flow rate passing through Cd-column on peak height;	51
	(1) blank and (2) 300 NO ₃ μg/l.	52

Figure		Page
2.22	FIA signals of nitrate standards.	54 55
2.23	Calibration curve of nitrate standards (n = 3)	55
2.24	Effect of Cd-column for nitrite determination; The nitrite calibration	E0
	curves: (1) without Cd-column (2) with Cd-column.	58
2.25	Absorption spectra of Cr(VI)-DPC-complex : (a) versus aqueous	
	reagent solution (0.2 %w/v DPC + 0.2 M H ₂ SO ₄) and (b) versus	64
	methanol (see text for detail).	61
2.26	Curve of a molar absorptivity study of chromium complex:	
	(versus aqueous reagent solution ((0.2 %w/v DPC + 0.2 M H ₂ SO ₄)	60
	as a reference).	62
2.27	Absorption spectra (versus H ₂ O as a reference) of : (1) the color	
	reagent blank (0.1 % w/v DPC + 0.5 M HNO ₃ + 0.15 M H ₂ SO ₄),	
	(2) Ce(IV) solution (0.6 %w/v Ce(NH ₄) ₄ (SO ₄) ₄ + 0.15 M H ₂ SO ₄),	
	(3) 0.6 % w/v Ce(IV) in the color reagent, (4) 0.1 mg/l of Cr(VI) in	
	the color reagent, (5) 1.0 mg/l of Cr(VI) and 0.6 % w/v Ce(IV) in	
	the color reagent, (6)1.0 mg/l Cr(VI) and 0.6 % w/v Ce(IV) in	-00
	color reagent and (7) 1.0 mg/l.Cr(III) in the color reagent	63
2.28	Flow diagrams of the system designed for ; (a) determination of	
	Cr(VI) (b) sequential determination of Cr(VI) and Cr(III);	
	P : peristaltic pump, RC : reaction coil, R1 : reagent solution	
	(DPC in acid solution), R2 : oxidizing reagent solution (Ce(IV) in	
	sulfuric solution), GBC : glass bead column, V1 : three way valve	
	(in Appendix A), V2 : rotary injection valve, C18 SPE column	
	(see in Appendix C) on V2 and W : waste.	64
2.29	Effect of flow rate on peak height for ; (1) blank (deionized water),	
	(2) 0.1 and (3) 1.0 mg Cr ²⁷ /l.	66
2.30	Effect of DPC concentration on peak height; DPC concentrations:	
	(1) 0.005, (2) 0.01, (3) 0.05, (4) 0.10 and (5) 0.15 %(w/v).	67
2.31	Fifect of acid concentration on peak height for (1) blank,	
	H ₂ SO ₄ media , (2) 0.1 mg Cr ⁶⁺ /l, H ₂ SO ₄ media , (3) blank,	00
	HNO ₃ media and (4) 0.1 mg Cr ⁶⁺ /l, HNO ₃ media.	68
2.32	Effect of the GBC length on peak height for; (1) blank and	00
	(2) 1.0 mg Cr ⁶⁺ /l.	69
2.33	Effect of the RC length on peak height; (1) blank, (2) 0.1 and	
	(3) 1.0 mg Cr ⁶⁺ /l.	70
2.34	FIA signals for the determination of chromium(VI) using 60 sec	
	loading time	71
2.35	Effect of loading time on the calibration curve; Loading time:	:
	(1) 40 sec [y = 1396.56(x) - 29.24, r^2 = 0.993] and (2) 60 sec	
	$[v = 1610.02(x) - 26.36, r^2 = 0.998]$	72
2.36	Effect of cerium (IV) concentration on peak height;	
	Cerium(IV) concentration: (1) 0.1, (2) 0.3, (3) 0.6,	
	(4) 0.8, (5) 1.0, (6) 1.2 and (7) 2.0 %(w/v).	76
2.37	Effect of H ₂ SO ₄ acid concentration in reagent R2 on peak height;	
	H ₂ SO ₄ concentration: (1) 0.3, (2) 0.5, (3) 1.0 and (4) 1.5 M.	77
2.38	Effect of DPC concentration on peak height; DPC concentrations:	
	(1) 0.05, (2) 0.10, (3) 0.13, (4) 0.15 and (5) 0.20 % (w/v).	78

Figure		Page
2.39	Effect of RC1 length on peak height; RC1 lengths:	
0.40	(1) 50, (2) 120 and (3) 200 cm. Effect of the aqueous methanol concentration on peak height;	79
2.40	Methanol concentrations: (1) 30, (2) 50, (3) 70, (4) 80, (5) 90 and	
	(6) absolute (99.8) % (V/V).	80
2.41	Effect of pH in a mixture of 0.3 mg Cr ⁵⁺ /l and 0.3 mg Cr ³⁺ /l	
	solution : (1) blank, H ₂ O stream, (2) the mixture, H ₂ O stream,	
	(3) blank, the Ce(IV) reagent stream (R2) and (4) the mixture, the Ce(IV) reagent stream.	81
2.42	Calibration curve: Different loading time; (1),(2),(3) 15, 30 and	
	60 sec, respectively using H ₂ O stream and (4),(5),(6) 15, 30 and	
	60 sec, respectively using the Ce(IV) reagent stream (R2).	82 83
2.43	(1) a single standard and (2) conventional calibration. FIA signals for the chromium determination; (a) Cr(VI), H₂O	03
2.44	stream, (b) Cr(VI), R2 reagent stream, (c) Cr(III), R2 reagent stream.	85
2.45	Calibration curve for chromium standards (n = 3): (1) Cr(VI),	
	H ₂ O stream, (2) Cr(VI), R2 reagent stream and (3) Cr(II),	05
0.40	R2 reagent stream (see text).	85
2.46	Absorption spectra of : (a) murexide (using water as a reference) and (b) its calcium(II) complex (using the reagent blank as	
	a reference), buffer pH 11.	87
2.47	Flow diagram of the system; P1: peristaltic pump, P2: aquarium	
	pump, GBC1 and GBC2 : glass bead column, S : sample, I : rotary	88
2.48	injection valve and W : waste. Effect of murexide concentration on peak height ; Murexide	00
2.40	concentrations : (1) 0.005, (2) 0.01, (3) 0.02, (4) 0.03 and	
	(5) 0.04 % (w/v).	89
2.49	Effect of sample volume on peak height; Sample volumes:	00
	(1) 100, (2) 200, (3) 250 and (4) 300 µl.	90
2.50	Effects of flow rates of murexide and ethylenediamine buffer streams on peak height for (1) 80 and (2) 160 mg Ca ²⁺ /l.	91
2.51	Effect of LED color on peak height (1) green, calcium, (2) yellow,	
<u></u> -	calcium, (3) green, magnesium and (4) yellow, magnesium.	92
2.52	Effect of pH: (a) Ca(II)-murexide and (b) Mg(II)-murexide complexes.	93
2.53	FIA signals of Ca(II)- and Mg(II)-murexide complexes using of buffer pH being 9.5.	95
2.54	Calibration curves for Ca(II)-murexide and Mg(II)-murexide complex	
	in different pH values; (1) pH = 9.0, (2) pH = 9.5, (3) pH = 10.5,	
	(4) pH = 11.5 and (5) pH = 12.0.	96
2.55	Absorption spectra: (a) versus H ₂ O; (1) Calmagite (pH=10)	
	(2) Ca-Calmagite (3) Mg-Calmagite complexes; (b): (1) the reagent in boric/borate buffer (pH=10) (Calmagite(0.001 % (w/v)), MgCl ₂	
	(2×10-5 % (w/v)) and an amount of EDTA which just turned the red	
	to blue), (2) Ca (40 mg/l) in the reagent, both using water as	. =
	a reference and (3) the Casolution versus the reagent as reference).	97

xviii

Figure		Page
2.56	Flow diagram of the system; R: reagent (calmagite + MgCl ₂ + EDTA + borate buffer), S: sample, P1: peristaltic pump, P2: aquarium	
	pump, I: rotary injection valve, RC: reaction coil and W: waste.	98
2.57	Effect of amounts of EDTA on peak height for; (1)blank, (2) 100 and (3) 300 mg/l as CaCO ₃ (blank subtraction).	99
2.58	Effect of calmagite concentration on peak height; Calmagite concentrations: (1) 0.003, (2) 0.006, (3) 0.009, (4) 0.012,	
	(5) 0 015 and (6) 0.018 % (w/v).	100
2.59	Effect of MgCl ₂ concentration on peak height; MgCl ₂ concentrations:	101
	(1) blank (× 10), (2) 100 and (3) 400 mg/l as CaCO ₃ . Effect of sample volume on peak height; Sample volumes:	101
2.60	(1) 100, (2) 200 and (3) 300 µl.	102
2.61	Effect of the RC length on peak height; The RC lengths:	
2.01	(1) 20, (2) 50 and (3) 100 cm.	103
2.62	Effect of flow rate on peak height; Flow rates:	404
	(1) 1.2, (2) 3.3 and (3)7.0 ml/min.	104
2.63	FIA signals of Ca standard.	106
2.64	Calibration curve of Ca.	106
2.65	Correlation between the results obtained by the proposed method	400
	(FIA) and (a) the titrimetric method or (b) the calculation method.	108
E.1	Single line FIA system for determination of injection valve	400
	dead volume.	120
F2	The plot for determination of injection value dead volume.	121

ABBREVIATIONS AND SYMBOLS

0C cm FIA g μg mg ł ml m٧ min nm μm mm sec No h i.d. M v/v

w/v

degree Celsius centimeter Flow injection analysis gram microgram milligram liter milliliter millivolt minute nanometer micrometer millimeter second number hour inner diameter diameter molarity volume by volume weight by volume