Appendix I

Calculation of Thin Mercury Film (TMF) Thickness on Glassy Carbon Electrode (Metrohm, 6.1204.1204)

Disk diameter: $2.0 \pm 0.1 \text{ mm}$

Area disk = $\pi r^2 = 3.1416 \text{ mm}^2$

(10 mm = 1 cm.)

 $= 0.031416 \text{ cm}^2$

Average deposition current = 1.0×10^{-4} A

Deposition time = 300 s

Amount of coulombs applied = $1.0 \times 10^{-4} \text{ A} * 300 \text{ s} = 0.03 \text{ C}$

Calculated Amount of Mercury (Hg) deposited = $0.03 \text{ C} \div (9.6485 \text{ x } 10^4 \text{ C/mole} \div 2)$

since: 1 Faraday = $9.6485 \times 10^4 \text{ C/mole}$

and 2 equivalents/mole Hg

 $= 1.55 \times 10^{-7} \text{ mole}$

= 1.55×10^{-7} mole * 10^6 µmole/mole

= 0.155 μmole * 200.59 μg/μmole

= 31.09 μg

Volume of Hg deposited = $3.109 \times 10^{-5} \text{ g/}13.54 \text{ g/cm}^3$ $(\rho_{\text{Hg,25}}^{\circ}\text{c} = 13.54 \text{ g/cm}^3)$ = $2.3 \times 10^{-6} \text{ cm}^3$

TMF Thickness = $2.3 \times 10^{-6} \text{ cm}^3 / 0.031416 \text{ cm}^2$

 $= 7.3 \times 10^{-5} \text{ cm}$

 $= 7.3 \times 10^{-7} \text{ m}$

 $= 0.73 \mu m$

Appendix II

Sample Calculation for Method Detection Limit

Xi	Yi	Y^i o	Y _i - Y^ _i	$(Y_i - Y^{})^2$
0	0.4204	0.3618	5.86 x 10 ⁻²	3.4×10^{-3}
2	0.8502	0.8407	9.5 x 10 ⁻³	0.1×10^{-3}
6	1.754	1.798	4.4 x 10 ⁻²	1.9 x 10 ⁻³
10	2.681	2.756	7.5×10^{-2}	5.6 x 10 ⁻³
14	3.696	3.714	1.79 x 10 ⁻²	0.3×10^{-3}
18	4.741	4.672	6.94 x 10 ⁻²	4.8 x 10 ⁻³

where : $X_i = \text{amount of Pb added (}\mu g/l)$

 $Y_i = current signal (\mu A)$

From linear regression of Xi and Yi values:

$$r = 0.9994$$

$$A = 0.3618 \Rightarrow Y_B$$

$$b = 0.2394$$

$$\Rightarrow$$
 y = 0.2394 (x) + 0.3618 Equation 1

$$S_{y/x} = \{ \sum (Y_i - Y_i)^2 / n - 2 \}^{1/2} = S_B$$

$$S_{y/x} = \{0.0161/(6-2)\}^{1/2}$$

= 0.0634

Limit of Detection: $Y - Y_B = 3S_B$

$$Y = 3(0.0634) + 0.3618$$

$$Y = 0.5522 \Rightarrow x = 0.794 \mu g/l = 0.08 \mu g/dl$$
 from Equation 1

Appendix III

Odds Ratio Calculation

Odds ratios were calculated using the Epi Info 6.0 system. Comparison of two potential risk factors with respect to their influence on the occurrence of PbB levels $\geq 10 \ \mu g/dl$ makes use of a 2 x 2 table such as the following:

PbMask100

Count	PbB ≥10 μg/dl	PbB <10	Row
		μg/dl	Total
Type of Mask			
1	37 (A)	11 (C)	48 (66.7 %)
2	16 (B)	3 (D)	24 (33.3 %)
Column Total	53 (73.6 %)	19 (26.4 %)	72 (100 %)

The odds of exposure among the "diseased" (A/C) is divided by the odds of the exposure among the "non-diseased" (B/D) to form the odds ratio, AD/BC. For the above example;

Note:

Mask 1 refers to the use of cotton masks

Mask 2 refers to the use of filter masks

Number of Registered Motor Vehicles in Chiang Mai City (1984 - 1996)

Appendix IV

Year	4-wheeled Motor Vehicles	Motorcycles	Total
	(cars, pick-ups, trucks, vans, minibuses)		
1984	23,960	112,479	136,439
1985	27,023	101,468	128,491
1988	48,291	207,300	255,591
1989	52,085	237,765	289,850
1990	63,823	236,486	300,309
1995	119,830	328,969	448,799
1996	132,775	365,309	498,084

Appendix V

Use of Lead as Gasoline Additive in Thailand

Year	Trend in reductions of Pb additive in gasoline
1984	Pb content in regular gasoline reduced from 0.84 g/l to 0.45 g/l
1989	Pb content in gasoline reduced from 0.45 g/l to 0.40 g/l
1991	Unleaded gasoline first introduced into the market
1992	Pb in regular and premium gasoline further reduced from 0.40 g/l to 0.15 g/l
1996	Total use of unleaded gasoline imposed nationwide

Appendix VI

---- ONEWAY -/---

Variable PbB

By Variable MTRAF96 (refers to # hours on road/day)

Analysis of Variance

Source	D. F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between	2	9477.0357	4738.5179	2.3106	.1055
Groups					
Within Groups	84	172265.3091	2050.7775		
Total	86	181742.3448			
Group C	ount Mean	Standard	Standard Error	95 Pct	Conf Int for Mean
		Deviation			
Grp 0 20	79.050	0 41.4722	9.2735	59.6404	TO 98.4596
Grp 1 12	2 106.75	51.9827	15.0061	73.7218	TO 139.7782
Grp 2 55	75.872	45.1052	6.0820	63.6791	TO 88.0664
Total 87	80.862	45.9705	4.9286	71.0644	TO 90.6597
GROUP M	NIMUM)	MAXIMUM			
Grp 0 17	.0000	178.0000			
Grp 1 35	.0000	169.0000			
Grp 2 11	.0000	219.0000			
TOTAL 11	0000 2	219.0000			
Levene Test for	Homogeneity o	of Variances			
Statistic	dfl d	df2 2-tail Sig.	\bigcirc		
1.2936	2 8	.280			

---- ONEWAY ----

Variable PbB

By Variable MTRAF96 (refers to # hours on road/day)

Multiple Range Tests: LSD test with significance level .05

The difference between two means is significant if

MEAN (J) - MEAN (I) \geq 32.0217 * RANGE * SQRT (1/N(I) + 1/N (J))

with the following value(s) for RANGE: 2.81

(*) Indicates significant differences which are shown in the following triangle

G	G	(
r	r	r
p	p	p
2	0	1

 Mean
 MTRAF96

 75.8727
 Grp 2

 79.0500
 Grp 0

 106.7500
 Grp 1

Appendix VII

----- ONEWAY - - - -

Variable PbB

By Variable MTRAF96 (refers to # hours on road/day)

Analysis of Variance

Source	D. F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between	1	9391.7603	9391.7603	4.3734	.0404
Groups					
Within	65	139586.3591	2147.4824		
Groups					
Total	66	148978,1194			

Group	Count	Mean	Standard	Standard	95 Pct	Conf Int	for Mean
			Deviation	Error			
Grp 1	12	106.7500	51.9827	15.0061	73.7218	TO	139.7782
Grp.2	55	75.8727	45.1052	6.0820	63.6791	TO	88.0664
Total	67	81.4030	47,5105	5.8043	69.8143	то	92,9917

GROUP	MINIMUM	MAXIMUM		
Grp I	35.0000	169.0000		
Grp 2	11.0000	219.0000		
TOTAL	11.0000	219.0000		

Levene Test for Homogeneity of Variances

Statistic	df1	df2	2-tail Sig.
1.9664	1	65	.166

Note:

Grp $1 \Rightarrow 1-2 \text{ hour(s)}$ traffic work/day

Grp $2 \Rightarrow \ge 3$ hours traffic work/day

Appendix VIII

---- ONEWAY -- --

Variable PbB

By Variable MASKC

Analysis of Variance

2				, a	77 D -41 6	2	F D1-
Source	D. F	. Su	m of Squares	Mean Squares	F Ratio		F Prob.
Betwee	n 1	110	091.3781	11091.3781	5.2285		.0255
Groups							
$W\ i\ t\ h\ i$	n 65	137	7886.7413	2121.3345			
Groups							
Total	66	14	8978.1194				
Group	Count	Mean	Standard	Standard	95 Pct	Conf Int	for Mean
			Deviation	Error			
Grp 1	43	71.7907	39.6836	6.0517	59.5779	TO	84.0035
Grp 2	24	98.6250	55.8514	11.4006	75.0410	TO	122.2090
Total	67	81.4030	47.5105	5.8043	69.8143	TO	92.9917
GROUP	MINIM	лм мах	KIMUM				
Grp 1	11.0000	169.0	0000				
Grp 2	13.0000	219.0	0000				

Levene Test for Homogeneity of Variances

11.0000

Statistic df1 df2 2-tail Sig. 3.5007 1 65 .066

Note:

TOTAL

Grp 1 refers to policemen who use filter masks

Grp 2 refers to policemen who use cotton masks

219.0000

CURRICULUM VITAE

NAME

: Maria Lourdes Nanette Deza Catalon

BIRTH DATE

: 04 February 1969

NATIONALITY

: Filipino

EDUCATIONAL BACKGROUND

B. S. Chemistry

: University of the Philippines -- Diliman

Quezon City, Philippines

1986 - 1990

PROFESSIONAL EXPERIENCE

Chemist

: SGS (Societé Generale de Surveillance) Far East, Ltd.

Makati, Metro Manila, Philippines

1994 - 1995

University Research Associate

: Natural Sciences Research Institute and

: Natural Products Research Laboratory

University of the Philippines -- Diliman

Quezon City, Philippines

1991 - 1993