TABLE OF CONTENTS

	PAGE
ACKNOWLEDGMENT	I
ABSTRACT	Π
LIST OF TABLES	X
LIST OF FIGURES	XI
ABBREVIATIONS	XII
I. INTRODUCTION	1
II. LITERATURE REVIEWS	3
A. Leukocyte surface molecules	3
B. Cell surface receptors and signal transduction	
C. Cell adhesion molecules (CAMs)	3 5
D. M6 molecule	
E. Monoclonal antibodies	7 8
1. The monoclonal antibody technology in theory	8
2. Monoclonal antibodies are powerful immunochemical	
tools for the characterization of leukocyte surface antigens	11
F. Expression of cloned genes in cultured mammalian cells	13
III. MATERIALS AND METHODS	16
1. Reagents	16
2. Antibodies	17
3. Cell lines	18
4. DNA	19
5. Production of monoclonal antibodies to M6 molecule	20
5.1 Immunization of mouse	20
5.2 Production of hybridomas	20
5.2.1 Preparation of myeloma cells for fusion	20
5.2.2 Preparation of splenocytes for fusion	21
5.2.3 Preparation of splenocyte feeder	21
5.2.4 Fusion	22

VIII

5.3 Screening of hybridomas	22
5.3.1 Indirect Immunofluorescence analysis	23
5.3.2 Screening of hybridoma by COS cell expression	
system	23
5.3.2.1 Preparation of M6 DNA	23
5.3.2.1.1 Preparation of competent bacteria	23
5.3.2.1.2 Transformation of competent E. coli by M6	
DNA	24
5.3.2.1.3 Screening of transformed bacterial colonies	24
5.3.2.1.3.1 Isolation of plasmid DNA from	
transformed bacteria	24
5.3.2.1.3.2 Restriction analysis of plasmid DNA	25
5.3.2.1.3.3 Large scale preparation of M6 DNA	26
5.3.2.2 Transfection of M6 DNA into COS cells by	•
DEAE-dextran method	27
5.3.2.3 Screening of hybridoma produced anti-M6	
monoclonal antibodies	28
5.4 Single-cell cloning by limiting dilution	28
5.5 Freezing and thawing of hybridoma and myeloma lines	29
5.6 Production of anti-M6 monoclonal antibodies	29
5.6.1 Collection of tissue culture supernatant	29
5.6.2 Collection of ascitic fluid	29
6. Determination of the isotype of monoclonal antibodies	30
7. Detection of M6 antigen on the cell surface of white blood	
cells	30
7.1 Isolation of peripheral blood mononuclear cells	30
7.2 Isolation of peripheral blood granulocytes	31
7.3 Detection of M6 antigen on leukocyte surface	31
8. Detection of M6 antigen on the cell surface of stimulated	
PBMC	31
9. Detection of M6 antigen on the cell surface of	
haematopoietic cell lines	31
10. Functional analysis of M6 molecule on the proliferation	
of haematopoietic cell lines	32
11. Optimization of the mitogen concentrations for PBMC	
stimulation	32
12. Functional analysis of M6 molecule on the proliferation	
of activated PBMC	32

IV. RESULTS	34
1. Production of Anti-M6 monoclonal antibodies	34
1.1. Preparation of M6 DNA and vector DNA	34
1.2. Immunization and cell fusion	37
1.3. Screening of hybridoma	37
1.4. Cloning of positive hybridoma by limiting dilution	on 39
1.5. Production of culture supernatant and ascitic fluid	d 39
2. Determination of the isotype of monoclonal antibodie	es 40
3. Expression of M6 molecule on haematopoietic cell lir	nes 40
4. Expression of M6 molecule on peripheral blood leuko	ocytes 40
4.1 Peripheral blood mononuclear cells (PBMC)	40
4.2 Granulocytes	46
5. Expression of M6 molecule on activated PBMC	49
6. The M6 molecule involved in cellular proliferation	53
6.1 Peripheral blood mononuclear cells (PBMC)	53
6.2 Haematopoietic cell lines	57
V. DISCUSSION	62
VI. SUMMARY	69
VII. REFERENCES	70
VIII. APPENDIX	77
IX. CURRICULUM VITAE	87

LIST OF TABLES

TABLI		PAGE
1	Specification of all human haematopoietic cell lines	
	used in this study	18
2	Specification of all animal cell lines used in this study	19
3	Expression of M6 molecule on peripheral blood	
	mononuclear cells	44
4	Expression of M6 molecule on granulocytes	47
5	Effect of anti-M6 mAb (1B9 and 2G11) on prolifera-	
	tion of PHA activated PBMC	55
6	Effects of incubation times and concentrations of the	
	K-562 cell line in the proliferation assay	58
7	Inhibitory effect of anti-M6 mAb on the proliferation	
	of K-562 cell line	59
8	Inhibitory effect of anti-M6 mAb on the proliferation	
	of Molt-4 cell line	59
	-	

LIST OF FIGURES

FIGURE		PAGE
1.	Basic protocol for derivation of monoclonal	
•	antibodies from hybridoma	10
2	Restriction analysis of M6 DNA and vector DNA	10
	isolated from transformed E. coli by plasmid miniprep	35
3	Photograph of M6 DNA transfected COS cells reacted	35
	with anti-M6 monoclonal antibody	36
4	Restriction analysis of M6 DNA and vector DNA iso-	
	lated from transformed E. coli by Cesium Chloride-	
	Ethidium bromide gradient ultracentrifugation	38
5	Determination of the isotype of anti-M6 mAb by	
	capture ELISA	41
6	Expression of M6 molecule on haematopoietic cell	
	lines	42
7 🖑 (Photographs of cell lines given positive reaction with	
	anti-M6 mAb	43
89	Expression of M6 molecule on peripheral blood	
	mononuclear cells	45
9	Expression of M6 molecule on granulocytes	48
10	Expression of M6 molecule on PHA activated PBMC	50
11	Expression of M6 molecule on PPD activated PBMC	52
12	Determination of the suboptimal concentration of	
	PHA for PBMC stimulation	54
13	Inhibitory effect of anti-M6 mAb on the proliferation	
	of PHA activated PBMC	56
14	Inhibitory effect of anti-M6 mAb on the proliferation	
	of K-562 cell line at 5 hours incubation	60
15	Inhibitory effect of anti-M6 mAb on the proliferation	
	of Molt-4 cell line at 5 hours incubation	61

ABBREVIATIONS

Ab Antibody

BSA bovine serum albumin
CD cluster of differentiation

cm² square centimeter c.p.m. count per minute degree celcius

CTL cytotoxic T lymphocyte
DMSO dimethyl sulphoxide

EDTA ethylene diamine tetraacetic acid enzyme-linked immunosorbent assay fluorescence-activated cell sorter

FCS fetal calf serum

FITC fluorescein isothiocyanate

HAT hypoxanthine aminopterin and thymidine

HGPRT hypoxanthine guanine phosphoribosyltransferase

HCl hydrochloric acid
IF immunofluorescence
IgG immunoglobulin G
IgM immunoglobulin M
Igs immunoglobulins

IL interleukin

IMDM Iscove's Modified Dulbecco's Medium

kDa kilodalton

KCl potassium chloride KHCO₃ potassium bicarbonate

KH₂PO₄ potassium dihydrogen phosphate

MEM minimal essential medium

MHC major histocompatibility complex

mAb monoclonal antibody

mM milli molar
NK natural killer
NaCl sodium chloride

Na₂HPO₄ disodium hydrogen phosphate

NaHCO₃ sodium bicarbonate NH₄Cl ammonium chloride

OD optical density

PBS	phosphate	buffered saline
נענו	phosphate	Durrord Same

PBMC peripheral blood mononuclear cell

PBSTween Tween-20 in PBS
PEG polyethylene glycol
PHA phytohemagglutinin

PPD purified protein derivative rpm revolution per minute SDS sodium dodecyl sulphate

SDS sodium dodecyl sulph SRBC sheep red blood cells

 μ micro κ kappa alpha β beta

β beta
 γ gamma
 μl microliter
 μg microgram
 μM micromolar

μm micrometre microcurie

ng nanogram