CHAPTER 2
THEORY

2.1 Earthquakes and Radon

Earthquakes result from long term deformation of materials of the
crust and upper mantle under the action of tectonic forces.  This
deformation leads to block instability. Fracturing of blocks occurs as a
result of high stress concentration on individual blocks. A block can
accumulate a large amount of elastic strain energy that produces fracture
instability. A large amount of strain energy instantly released during
fracturing is the prime cause of an earthquake.

Fleischer (1981) suggested that changes in a strain field are the most
obvious long-term effect expected dwring a stress buildup prior to an
earthquake or during a stress release by the event and its aftershocks.
Radon could be affected by opening or closing of cracks that either
influences a release of radon or causes its flow with interstitial fluid in the
Earth’s crust.

A mechanism by which radon anomalies are associated with recent
crustal movement suggests that during a slow movement (fault creep} or a
rapid movement (earthquake) in the crust, the strain is accumulated and
released. As a constituent part of a rock body, fractures in the rocks under

stress cause changes in the pore pressure and increase the number of
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microcracks, causing the migration of radon from a greater depth through

the soil surface.

2.2 Movement of Radon in Overburden

Uranium in soils and rocks is the source of most radon. The decay
series, beginning with 238U, is a major source of natural radiation exposure.
Local high levels of uranium are due mainly to the underlying rock type and
its component minerals. A significant uranium daughter is radium, 226Ra,
which has a half-life of 1,600 years. Radium’s daughter, radon, 222Rn, is the
only inert radioactive gas and has a half-life of 3.8 days.

Because the law of radioactive disintegration is simple and
unvarying, it is rather easy to calculate the amount of radon generated by a
given amount of 238U, provided the Iadioactive series is in equilibrium at
least to the level of radon. However, analysis for the escape of gas from its
source and its movement thiough the overburden is a more complex matter,
depending upon a large number of variables, such as the emanation
coefficient of the source, the diffusion coefficient of the overburden, and the

geometrical configuration of the whole system.

In the case of a radioactive series in equilibrium, it can be shown that
AN, = AN, =eee= A N (1)

where A, is the decay constant of isotope n of series, and N, is the

number of atoms of isotope n. Using this relationship, it can be shown that
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1 g of natural uranium is in equilibrium with 3.713xi10_7 curies or 3.‘713}(105
picocuries (pc) of radon. However, only a fraction of the radon so
generated can escape from the generating medium and  enter the
overburden. |

Radon can migrate through rocks and overburden by diffusion, a flow

of moving fluid, or by a combination of both.

Adr, z=0, C=0,

Overburden h

Source, z=h, C=C,,

Figure 2.2a An infinite source with overburden.

A two-layer case of infinite source is shown in Figure 2.2a. In this
figure, an infinite source is overlain by an overburden of thickness h. This
overburden contains no radon souice. If radon is transported only by
diffusion under steady state conditions (dC/dt =0), radon concentration (C)

within the overburden can be represented by the equation:
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where D is the diffusion coefficient and A is the decay constant. With
boundary conditions C=C; at z=h and C=0 at the surface (z=0), it can be

shown that

sinh(zm)

2 sinh(h/A /D)

(2)

where C, is radon concentration at the source point. Equation (2) was
derived assuming that soil air was stationary and the transport of radon
wag due to diffusion only.

In the case where the overburden contains radon source with
production rate P, the diffusion transport of radon produced within a

homogeneous ground is represented by the equation:

d*Cc 2
The solution is
P
— O axnf—
C= x [1 exp( ZJA./D)] (3)

In the case of an infinite source with convection in the overburden,
the movement of radon is the result of two processes, diffusion and radon
flow with a velocity v. The equation for this case where the overburden

contains no radon source is:
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2
D-CLE-!-V(;—C—)LC:O

dz? Z

The solution is

sinh(Z\/vz /4D? +7L/DJ

C=C h-zyv/2D
o7|(n=7)+/20) sinh(h\/vz /4D? +?\,/D]

where v is the flow velocity in soil (v is positive upward).
The case of diffusion transport plus flow movement of radon in

homogeneous ground with production rate (P, is represented by the

equation:
2
Dd §+v£——kC+P0 =0
dz dZ
The solution is
o 2
c=-2 l—exp(—v/le—\/vz /4D +?LID)Z (5)

A three-layer Earth, which is assumed to represent the study area,
where the overburden contains no radon source is shown in Figure 2.2b.
Diffusion transport and movement of radon in three layers above the source

are as follows:
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Air 2=0, C=0
Cz1 H J
Overburden h,
C1, D1, v, 240N
. h,
3 water table
C, D, v,
Source = Bedrock (Granite) C=C,

Figure 2.2b. An infinite source with three layers.

For the first layer, overburden:

a®c,  dc,
D1 + Vi ?LC1 =
dZZ dZ
For the second layer:
d*c, ac,
D +v,—=-AC, =0
2 dz2 2 dz 2
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With the following boundary conditions:

a) z=0, C,=0

dCl dC2
b) Z:hl’ 01202’ —D1 E— = —[)2 T
c) z=h,, C,=C,

The solution for the first layer and the second layer are as follow:

¢, (@) =2C, | P2b2=Ds2; ) exp(h, ~h, )b, exp[—leIZD,]sinh(z\/vlz/4D12+?L/D,J 6)
0 Mexp(b, —a, }h, —=h,)-N

Nexp(b,z)-Mexp(b,h, —a,h, +azz)} 7)

C =C, ex ‘—b h
2(2) o EXp(=; 2)|:N—Mexp(bzh1_azhl_b2h2+a2h2)

WheIe M= (D2b2 —Dlal)exp(alh])+(le1 —Dzbz)e){p(blhl)

N =(Djya; - Dya;)exp(a h))+(Dyby ~ DaayYexp(bihy)

a, = -V1/2D1+\/v12/4D,2 +A/D,

a, = -v,/2D,+ Jv,214D,2 +2/D,

b, = —V1/2D1-\/v,2 /4D,% +1/D,

b, = -v,/2D, \v;2 /4D,2 +1/D,

There fore, the ratio of radon concentration in the first layer is:

Czl
C—=exp[(22—zl)v1/2D]] ) >
2 smh( z, J v /4D

; 2 2
smh[zl\/vI /"-1D1 +l/D1J

2
i +?LID1J

where C,, is radon concentration at z=z,, C,, is radon concentration at z=z,.
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2.3 The mathematical model used to distinguish the variation of
radon concentration due to meteorological factors from the

total radon anomaly

The mathematical model used to distinguish the wvariation of radon
concentration due to meteorological factors from the total radon anomaly , is
more exact than the observation base. There now follows a discussion of
the mathematical model: Let Y{n), n=1,2,..N be a time series representing
the radon concentration. For a given discrete time n, Y(n) can be expressed
as a sum of two terms. The first of these terms is linearly correlated with
environmental parameters, such as soil temperature, precipitation, and
atmospheric pressure. The sécond term, denoted W, is not correlated fo
any environmental parameter and is the component that is interesting for
monitoring subsurface phenomena. Therefore, if x,.x,..X, are time series
representing the environmental parameters, the general formulation of this

assertion is expressed as follows:
Y = [T XKD K 4 (9)

The row vectors: T, = ( y0.7,0 1., = [ y. 0.y, 1 are the so-called
impulse r1esponses of order p. The asterisk stands for the discrete

convolution product and equation (9) can be written as:

m oo
Y(n) = 'Zlk S1;(n-0)X; (k) + w(n)
1=k =—co
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m
Y(n) = _Zlk P y; (k)X (k) + w(n)
1= =—Cc0

| _—
Y(n) = glkégi(k)xi (n-k) + ¥(n) (10)

If p is the order of the multichannel linear system, equation (10) can

be written as:

m
Y() = T £1;00X; (a-k) + #(n)
1=Ix=0

P
= 2 n- n
Y(n) k=0F(k)X( k) +¥(n) (1)

X (n-k)

X(n—k) = :
where, ['(k)= {v,00..y, & ] X, (n=k)
m

Equation (10) can be written as the block vector inner product:

¥in) = L,X,m+¥m) (12)
X(n)
Xp(n)= :
where, I =110.1I'p) ) and P X(n-p)

T
Multiplying the two left-hand members of equation (11) by Xp (R) |

the transposed matrix of X (n), and taking the expectation:
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E{Y(n)g};(n)} = E{zp.zp(n).xg(n)} + E{mmgm}

L, B{ X(n). Xp () } (13)

=P

Since E{‘*’(")-Kg(“)} = 0, because the time series ¥ is not correlated
with the time series X, X,,....X, by definition, which does not depend on

the index n, due to the stationary nature of time series

¥YX _ XX
=Ry =L R} (14

Thus, the row block vector solution L, is given by the relationship:

p (15)

yx . . .
where I—{p is the row correlation vector of block dimension p+1

R -[R* 0.k )]

1 N X
N—k+1n§kY(n) ek

YX 1y
RY(k) =

and B:x is the symmetrical block-Toeplitz correlation matrix of block

dimension (p+1)x(p+1):
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_RXX(O) R*¥*1) .. R**(p ]
RIX = R¥™(-1)  R™*(0) .. R¥(p-1)
| R*™*(-p) R™(-p+l) .. R*™(0) |

R¥X (k)=E{X(n).XT(n—k)}

1 N

XX L —— —_—
Ri’j(k)—N_k+1n§kXi(n)Xj(n k)

X
In order to make the system B% =1:p ng well posed, a
regularization method must be applied. The method proposed here is the
so-called Tikhonov regularization method, adapted to the special case of an

Hermitian block-Toeplitz correlation matrix in the frame of this work.

-1
, =U_ =YX sXX
The estimator Lp=Rp (EP Ml I) is regularized, I being the m

(p+1)xm(p+1) size unity matrix and p being a positive number, known as a
regularization parameter.

Substitute equation (15) in equation (12), the result is:

Y(n)-X,(n—-k)
Y(n)=Y(n)— pT X(n) (16)
Xpm) X, (n-K)

Equation (16) can be simply solved for W(n) because the parameters

Y(n) and X{(n) are known from the observation. Y(n) is a time series of radon
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concentration and X(n) is a time series of meteorological data, such as soil
temperature, precipitation, and barometric pressure.

The sequence of mathematical model used for processing soil gas
radon in this study is shown in Figure 2.3
where Y(n) is the time series of radon concentration,

Y’'(n) is the time series of radon concentration relate to meteorological

factors,

X,(n) is the time series of soil temperature,

X,(n) is the time series of barometric pressure,

X,(n) is the time series of rainfall

and n is a discrete time (week), n=1,2,...,40.
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Y(n)=Y"(n)+¥(n}

Yin} = I,(n). X, (n)+L,n) Xm0} X+ Fin)

X2 (n) X3(n)
H{y2@ oov2] 7 Hra® ovam] P )

Xo{n-p) X3(n-p)

X1(n)
Y(n)=[11(0) ... vi(p)]
Xi(n-p)

¥(n) = L (n}.X {n)+¥(n)

7,0 - v | Xi(m) X, () X;(n)
Y(n)=|v,(0) - v.(p) : : : +'¥(n)

Y50 - v | X\(n—p) X (n-p) X;(n-p}

I
0

B{ Y XD (m}=B{ £, X, (mxF ()} W}

T~ E{Y(). X, () E({X,0). X, (n))’

- —1
1O - 1y Xm X Xy T Xm X Xz T Xim X Xy |
¥2(0) - ¥ (p)} |=¥(n) H H i i i H : H :
¥3(0) -+ valp) Xj{n-p) Xg{n-p) X;(n-p) Xp{n-p) Xg{n-p} X4(n-p) Xj{n-p) X,(n-p) X3(m-p)

X1(n) Xa(n)

X3(n)
Y () ={y1(0) ... vi(p)] +y200 .. 2] P |+[r300 .. vap)]
X2(n-p) X3(n—p)

X1{n~p)

Figure 2.3 The sequence of mathematical model used for processing soil gas radon.



