CONTENTS

	Page
ACKNOWLEDGMENT	iii
ABSTRACT	iv
LIST OF TABLES	\mathbf{x}
LIST OF FIGURES	xiii
ABREVIATIONS	xvii
CHAPTER 1 INTRODUCTION	
1.1 Uranium	1
1.1.1 General	1
1.1.2 Applications of uranium	2
1.1.3 Determination of uranium	3
1.2 Yttrium	7
1.2.1 General	7
1.2.2 Applications of yttrium	9
1.2.3 Determination of yttrium	10
1.3 Flow Injection Analysis	15
1.4 Aims of the Thesis	16
CHAPTER 2 EXPERIMENTAL, RESULTS AND DISCUSSION	
2.1 Apparatus and Chemicals	17
2.1.1 Apparatus	17
2.1.2 Chemicals	17

2.1.3 Stock solutions	18
2.2 Determination of Uranium by Flow Injection Fluori	metry 20
2.2.1 Preliminary study on fluorescence spectra	of
uranium in aqueous solution	20
2.2.2 Preliminary study on fluorescence spectra	of
uranium in buffer solutions of pH 8	23
2.2.2.1 Buffer solutions with phosphate	e species 23
2.2.2.2 Other buffers	28
2.2.2.3 Summary	33
2.2.3 Preliminary study on fluorescence spectra	a of
uranium in phosphoric and sulfuric acid s	solutions 34
2.2.3.1 The efect of pH of acid solution	ns 37
2.2.3.2 Buffer solutions of pH 3-4	38
2.2.4 Development of flow injection analysis sy	ystems 43
2.2.4.1 Single line manifold	43
2.2.4.2 Two line manifold	56
2.3 Determination of Yttrium by Flow Injection Analy	ysis 61
2.3.1 Molar absorptivity study	61
2.3.2 FIA manifold design	62
2.3.2.1 Three line manifold	62
2.3.2.2 Two line manifold	64
2.3.3 Resin for yttrium preconcentration	67
2.3.4 Optimisation	72

2.3.4.1 Conventional method	72
2.3.4.2 Simplex optimisation	82
2.3.5 pH of sample	89
2.3.6 Effect of water washing time	90
2.3.7 Calibration curve	91
2.3.8 Effect of preconcentration time	93
2.3.9 Adsorption onto glass	95
2.3.10 Interferences	97
2.3.11 Determination of yttrium in tin tailing leachates	98
CHAPTER 3 CONCLUSION	99
REFERENCES	102
APPENDIX A	107
APPENDIX B	112
APPENDIX C	115
APPENDIX D	116

LIST OF TABLES

TABLE		Page
1.1	Some fluorimetric methods for the determination of uranium	6
1.2	Review of yttrium determination by spectrophotometry	12
1.3	FIA techniques for the determination of yttrium	14
2.2.1	Emission intensity of uranium in aqueous media at pH 8	23
2.2.2	Emission intensity of uranium in citric acid - Na ₂ HPO ₄	24
2.2.3	Emission intensity of uranium in KH ₂ PO ₄ - NaOH	26
2.2.4	Emission intensity of uranium in Na ₂ HPO ₄ - KH ₂ PO ₄	28
2.2.5	Emission intensity of uranium in NH ₄ Cl - NH ₃	29
2.2.6	Emission intensity of uranium in Na ₂ B ₄ O ₇	32
2.2.7	Maximum excitation and emission wavelengths of uranyl ion at pH	833
2.2.8	Fluorescence intensity of uranium in acid solutions	36
2.2.9	Fluorescence of uranium in KH ₂ PO ₄ - Na ₂ HPO ₄ at various pH	37
2.2.10	Fluorescence of uranium in K ₂ HPO ₄ - H ₃ PO ₄	42
2.2.11	Summary of maximum excitation and emission wavelengths of	
	uranyl ion at pH 3.5.	42
2.2.12	Emission intensity of uranium when using GG as an emission filter.	45
2.2.13	Emission intensity of uranium when using PP as an emission filter	47
2.2.14	Effect of carrier flow rates on peak height	48
2.2.15	Effect of Na ₂ B ₄ O ₇ concetrations on peak height	49

2.2.16	Effect of mixing coil lengths on peak height	50
2.2.17	Effect of sample volumes on peak height	51
2.2.18	Effect of initial pH on that of final solution	53
2.2.19	The emission efficiency of a normal glass filter compared	
	with that of 4 PP filters	54
2.2.20	Peak height obtained with uranium standard solutions from	
	1 to 5 mg/l	55
2.2.21	Peak heights obtained from single and two line manifolds	57
2.2.22	Effect of NaOH concentrations on peak height	58
2.2.23	Effect of K ₂ HPO ₄ concentrations on peak height	59
2.3.1	Peak height obtained for yttrium standard solution using	
	a three line manifold	64
2.3.2	Peak height obtained for yttrium standard solution using	
	a two line manifold	66
2.3.3	Peak height of yttrium standard solution 0.01 mg/l with	
	preconcentration time of 5 minutes from various types of resin	70
2.3.4	Peak height of yttrium standard solution 0.05 mg/l with	
	preconcentration time of 3 minutes from various types of resin	70
2.3.5	Effect of HCl concentrations on peak height	72
2.3.6	Effect of buffer concentrations on peak height	73
2.3.7	Effect of Arsenazo III concentrations on peak height	74
2.3.8	Effect of flow rates of eluent on peak height	75
2.3.9	Effect of flow rates of reagent on peak height	76

2.3.10	Effect of mixing coil 1 lengths on peak height	77
2.3.11	Effect of mixing coil 2 lengths on peak height.	78
2.3.12	Effect of loading flow rates on peak height	79
2.3.13	Effect of resin column lengths on peak height.	80
2.3.14	The initial vertices of simplex method for yttrium determination	84
2.3.15	All of vertices in simplex method for yttrium determination	86
2.3.16	The comparison of FIA optimum conditions obtained	
	between conventional and simplex methods	88
2.3.17	Effect of pH sample solutions on peak height	90
2.3.18	Effect of water washing times on peak height	90
2.3.19	The absorbance obtained from varying either yttrium standard	
	solutions or preconcentration times.	91
2.3.20	Effect of preconcentration times on peak height	94
2.3.21	Effect of adsorbed ions onto glass surface	96
2.3.22	Summary of interferences	97
2.3.23	Determination of yttrium in tin tailing leachates	98
B.1	Effect of interfering ions in flow injection analysis for	
	yttrium determination	112

LIST OF FIGURES

FIGURE	Page
1.1.1	Some reactions of uranium. 2
1.2.1	Some reactions of yttrium9
2.2.1	Fluorescence spectra of uranyl ion in aqueous solution20
2.2.2	Effect of pH on fluorescence spectra of uranyl solution
2.2.3	Fluorescence spectra of uranium in aqueous media
2.2.4	Calibration curve of uranium in aqueous media
2.2.5	Excitation and fluorescence spectra of uranium in phosphate buffer23
2.2.6	Fluorescence spectra of uranium in citric acid - Na ₂ HPO ₄
2.2.7	Emission intensity of uranium in citric acid - Na ₂ HPO ₄
2.2.8	Fluorescence spectra of uranium in KH ₂ PO ₄ NaOH25
2.2.9	Emission intensity of uranium in KH ₂ PO ₄ . NaOH26
2.2.10	Fluorescence spectra of uranium in Na ₂ HPO ₄ _ KH ₂ PO ₄ 27
2.2.11	Emission intensity of uranium in Na ₂ HPO ₄ _ KH ₂ PO ₄
2.2.12	Fluorescence spectra of uranium in NH ₄ Cl - NH ₃
2.2.13	Emission intensity of uranium in NH ₄ Cl - NH ₃
2.2.14	Fluorescence spectrum of uranium in NH ₄ NO ₃ - NH ₃
2.2.15	Fluorescence spectrum of uranium in triethanolamine
2.2.16	Fluorescence spectra of uranium in glycine - NaOH31
2.2.17	Fluorescence spectra of uranium in Na ₂ B ₄ O ₇

2.2.18	Emission intensity of uranium in Na ₂ B ₄ O ₇ 32	
2.2.19	Fluorescence spectra of uranium in H ₂ SO ₄ 34	
2.2.20	Fluorescence spectra of uranium in H ₃ PO ₄	
2.2.21	Fluorescence spectra of uranium in H ₂ SO ₄ _H ₃ PO ₄ 35	
2.2.22	Calibration of uranium in acid solutions	
2.2.23	Fluorescence intensity of uranium at various pH values38	
2.2.24	Fluorescence spectrum of uranium in sodium acetate - acetic acid39	
2.2.25	Fluorescence spectrum of uranium in potassium hydrogen tartate39	
2.2.26	Fluorescence spectrum of uranium in sodium formate - formic acid40	
2.2.27	Fluorescence spectrum of uranium in glycine - HCl40	
2.2.28	Fluorescence spectra of uranium in KH ₂ PO ₄ - H ₃ PO ₄ 41	
2.2.29	Calibration for uranium in KH ₂ PO ₄ - H ₃ PO ₄ buffer	
2.2.30	Single line manifold for the fluorimetric determination of uranium44	
2.2.31	Calibration with GG emission filters46	5
2.2.32	Calibration with PP emission filters47	7
2.2.33	Effect of carrier flow rates on peak height4	7
2.2.34	Effect of Na ₂ B ₄ O ₇ concentrations on peak height	8
2.2.35	Effect of mixing coil lengths on peak height50	0
2.2.36	Effect of sample volumes on peak height5	1
2.2.37	Effect of initial pH on peak height5	; 3
2.2.38	Calibrations using a normal glass filter compared with	
	that of 4 PP filters5	4

Response of uranium standard solutions from 1 to 5 mg/l	55
Two line manifold for the fluorimetric determination for uranium5	6
Calibrations from single and two line manifolds	7
Effect of NaOH concentrations on peak height5	8
Effect of K ₂ HPO ₄ concentrations on peak height	0
Absorption spectra of yttrium - Arsenazo III complex	51
Three line FIA manifold	52
Calibrations for yttrium standard solution with a three line manifold6	53
Two line FIA manifold.	54
Calibrations for yttrium standard solutions with a two line manifold	65
FIA manifold for preconcentration study	68
Peak heights obtained from various types of resin using yttrium	
standard 0.01 mg/l with preconcentration time 5 minutes	69
Peak heights obtained from various types of resin using yttrium	
standard 0.05 mg/l with preconcentration time 3 minutes	.71
Effect of HCl concentrations on peak height.	.73
Effect of buffer concentrations on peak height.	.74
Effect of Arsenazo III concentrations on peak height	.75
Effect of flow rates of eluent on peak height.	.76
Effect of flow rates of reagent on peak height	.77
Effect of mixing coil 1 lengths on peak height	.78
Effect of mixing coil 2 lengths on peak height	.79
	Calibrations from single and two line manifolds

2.3.16	Effect of loading flow rates on peak height	80
2.3.17	Effect of resin column lengths on peak height	81
2.3.18	Effect of pH sample solutions on peak height.	89
2.3.19	Signals from yttrium standard solutions loaded for a	
,	preconcentration time of 6 minutes	92
2.3.19	Calibration for yttrium standard solutions loaded for a	
	preconcentration time of 6 minutes	92
2.3.20	Calibration for yttrium standard solutions loaded for various	
	preconcentration times	93
2.3.21	Effect of preconcentration time on peak height	95
2.3.22	Effect of adsorbed ions onto glass surface.	96
A .1	The simplex in two dimensions	.108
A.2	The moving in normal progression of two dimension simplex	108
A.3	Failure of simplex on ridge	109
A.4	Progress of simplex on ridge	110

ABBREVIATIONS AND UNITS

 $\lambda \qquad \quad wavelength$

λex excitation wavelength

λem emission wavelength

E molar absorptivity

V volt

mV millivolt

MeV mega electron volt

Fig. figure

M molarity

N normality

sens. sensitivity

ref. reference

v/v volume by volume

w/v weigth by volume