TABLE OF CONTENTS

	page
Tittle page	i
Approval Sheet	ii
Acknowledgments	iii
Abstract	iv
List of Tables	xi
List of Illustrations	xiii
Abbreviations and Symbols	xv
1. INTRODUCTION	1
1.1 Amphetamine	1
1.2 Methamphetamine	7
1.3 Ephedrine	8
1.4 Analysis of Amphetamine, Methamphetamine and Ephedrine	10
1.5 Sample Preparation	11
1.5.1 Solid Phase Extraction	12
1.6 Derivatization	12
1.7 Gas Chromatography - Mass Spectrometry	16
1.7.1 System configuration	17
1.7.2 Electron ionization	19
1.7.3 Mass analysis	20
1.8 The Scope and Aims of This Research	21
2. EXPERIMENTAL	22
2.1 Apparatus and Chemicals	22
2.1.1 Apparatus	22
2.1.2 Chemicals	23

	2.2 Preparation of Solutions	24
	2.2.1 Preparation of Standard Solutions	24
	2.2.1.1 Stock Standard Solution	24
	2.2.1.2 Working Standard Solution without Internal Standard	24
	2.2.1.3 Internal Standard Solution	24
	2.2.1.4 Working Standard Solution with the Presence of Internal Standard	24
	2.2.2 Preparation of SPE Solutions	25
	2.2.2.1 Phosphate buffer Solutions	25
	2.2.2.2 Rinse Solutions	25
	2.2.2.3 Elution Solutions	25
	2.2.2.4 Sample Preparation	25
	2.3 Optimization of GC-MS Condition	25
	2.3.1 GC parameters optimization	26
	2.3.2 MS parameters optimization	26
	2.4 Calibration Curves	26
	2.5 Limit of Detection	26
	2.6 Linearity, Repeatability and Reproducibility	27
	2.7 Optimization of SPE Condition	27
	2.8 HFBA Derivatization	27
	2.9 Recovery Assay	28
	2.10 Analysis of Urine Samples	28
3.	RESULTS	31
	3.1 Optimization of GC-MS Condition	31
	3.1.1 Optimal GC parameters	31
	3.1.2 Optimal MS parameters	47
	3.1.3 Summary of Optimized GC - MS Condition	47

3.2 Limit of Detection	54
3.3 Linearity	54
3.4 Repeatability and Reproducibility	59
3.5 Optimization of SPE Condition	59
3.6 Recovery Assay	60
3.7 Analysis of Urine Samples	61
4. DISCUSSION AND CONCLUSIONS	63
4.1 Discussion	63
4.2 Conclusions	67
REFERENCES	70
APPENDIX	73
VITA	78

LIST OF TABLES

Table	page
1.1 Physical properties of amphetamine	2
1.2 Physical properties of methamphetamine	7
1.3 Physical properties of ephedrine	9
3.1 Influence of injector temperature	31
3.2 Influence of initial temperature	32
3.3 Influence of final temperature	32
3.4 Influence of ramp rate in program temperature	33
3.5 Influence of flow rate of carrier gas	33
3.6 Influence of initial temperature with the presence internal standard	34
3.7 Influence of injector temperature of HFBA derivatives	34
3.8 Influence of initial temperature of HFBA derivatives	34
3.9 Influence of final temperature of HFBA derivatives	35
3.10 Influence of ramp rate in program temperature of HFBA derivatives	35
3.11 Influence of flow rate of carrier gas of HFBA derivatives	35
3.12 Influence of manifold temperature of HFBA derivatives	47
3.13 Influence of ion trap temperature of HFBA derivatives	47
3.14 Optimized GC-MS condition for analysis of underivatized drugs	48
3.15 Optimized GC-MS condition for analysis of HFBA derivatives	48
3.16 Retention times and selected ions used for the identification	49
of underivatized drugs	
3.17 Retention times and selected ions used for the identification	49
of HFBA derivatives	
3.18 Limit of detection of underivatized drugs and HFBA derivatives	54

3.18 Limit of detection of underivatized drugs and HFBA derivatives	54
3.19 Linearity and correlation coefficient of underivatized drugs	54
3.20 Linearity and correlation coefficient of HFBA derivatives	54
3.21 Repeatability of underivatized drugs	58
3.22 Repeatability of HFBA derivatives	58
3.23 Reproducibility of underivatized drugs	58
3.24 Reproducibility of HFBA derivatives	59
3.25 The effect of pH values of urine on SPE	59
3.26 The effect of rinse solution of urine on SPE	59
3.27 The effect of elution solution of urine on SPE	60
3.28 Recovery of amphetamine, methamphetamine and ephedrine in	60
urine sample	
3.29 Limit of detection of sample	61
3.30 Analysis of amphetamine, methamphetamine and ephedrine in	61
urine samples	

LIST OF ILLUSTRATIONS

Figure	page
1.1 Amphetamine structure	2
1.2 Metabolic pathway for amphetamine and methamphetamine	6
1.3 Methamphetamine structure	7
1.4 Ephedrine structure	8
1.5 Solid Phase Extraction process	13
1.6 Vacuum manifold column processor	14
1.7 Process of mass spectrometry	17
1.8 Data generated by GC-MS system	17
1.9 The GC-MS system	18
1.10 Energy versus ionization plot	19
1.11 Three common types of mass analyzers	20
2.1 Chromatogram of selected drugs for internal standard selection	29
2.2 Scheme of procedure for amphetamine, methamphetamine	30
and ephedrine determination	
3.1 Chromatogram of mixed standard showing the effect of injector temperature	re 36
3.2 Chromatogram of mixed standard showing the effect of initial temperature	37
3.3 Chromatogram of mixed standard showing the effect of final temperature	38
3.4 Chromatogram of mixed standard showing the effect of ramp rate in	39
program temperature	
3.5 Chromatogram of mixed standard showing the effect of flow rate of	40
carrier gas	
3.6 Chromatogram of mixed standard showing the effect of initial temperature	41
with the presence internal standard	

3.7 Chromatogram of mixed standard HFBA derivatives showing the effect		42	
of injector temperature			
3.8 Chromatogram of mixed standard l	HFBA derivatives s	howing the effect	43
of initial temperature			
3.9 Chromatogram of mixed standard l	HFBA derivatives s	howing the effect	44
of final temperature			
3.10 Chromatogram of mixed standard	HFBA derivatives	showing the effect	45
of ramp rate in program temperate	ıre		
3.11 Chromatogram of mixed standard	HFBA derivatives	showing the effect	46
of flow rate of carrier gas			
3.12 Mass spectra and chromatogram of	of underivatized dru	gs	50
3.13 Mass spectra and chromatogram of	of HFBA derivative	S	51
3.14 Mass fragmentation patterns of a)	amphetamine b) an	nphetamine-HFBA	52
3.15 Mass fragmentation patterns of a)	methamphetamine		52
b) methamphetamine-HFBA			
3.16 Mass fragmentation patterns of a)	ephedrine b)ephedr	ine-HFBA	53
3.17 Mass fragmentation patterns of a)	phenylpropanolami	ne	53
b)phenylpropanolamine-HFBA			
3.18 Linearity of amphetamine			55
3.19 Linearity of amphetamine-HFBA			55
3.20 Linearity of methamphetamine			56
3.21 Linearity of methamphetamine-H	IFBA		56
3.22 Linearity of ephedrine			57
3.23 Linearity of ephedrine-HFBA			57

ABBREVIATIONS AND SYMBOLS

amp amphetamine

AR analytical reagents

B.E. Buddhist Era

C₁₈ octadecyl sorbent

CI chemical ionization

CNS Central Nervous System

DB-5MS 95% dimethyl-5%diphenylpolysiloxane

EI electron ionization

eph ephedrine

EtOH ethanol

eV electron volts

GC gas chromatography

GC-MS gas chromatography - mass spectrometry

HFBA heptafluorobutyric anhydride

HPLC high performance liquid chromatography

met methamphetamine

mg milligram

min minute

ml milliliter

MS mass spectrometry

M.W. molecular weight

m/z mass to charge ratio

No. number

phe phenylpropanolamine

RSD relative standard deviation

SPE solid phase extraction

temp. temperature

TIG Thai Industrial Gas

TLC thin layer chromatography

ug microgram

ul microliter

v/v volume by volume

° C degrees Celsius

> greater than

% percent