Appendix RESULTS OF STATISTICAL ANALYSIS

A. STATISTICAL ANALYSIS FOR LEAD AND ZINC AT DIFFERENT DEPTHS

Group 1: Element content in surface depth (0 - 10 cm)
Group 2: Element content in middle depth (20 - 30 cm)
Group 3: Element content in bottom depth (50 - 60 cm)

1. Comparison of mean Pb content at different depths of background level samples

Variable: Lead in background level samples

By Variable : DEPTHS

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups Within Groups Total	2 57 59	1689.7013 9385.3480 11075.0493	844.8507 164.6552	5.1310	.0089

(*) Indicates significant differences which are shown in the lower triangle

G G G r r r p p p

1 2 3

40.8200 Grp 1 48.3600 Grp 2 53.7600 Grp 3

LAYER

Mean

Copyright[©] by Chiang Mai University All rights reserved

2. Comparison of mean Pb content at different depths of high level samples

Variable: Lead in high level samples

By Variable: DEPTHS

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups Within Groups Total	2 51 53	2262488.676 183222763.0 185485251.7	1131244.338 3592603.196	.3149	.7313

Levene Test for Homogeneity of Variances

Statistic df1 df2 2-tail Sig. .6109 2 51 .547

- No two groups are significantly different at the .050 level

Homogeneous Subsets (highest and lowest means are not significantly different)

Subset 1

Group Grp 1 Grp 3 Grp 2

Mean 1012.6000 1271.0167 1513.9056

3. Comparison of mean Zn content at different depths of background level samples

Variable: Zinc in background level samples

By Variable: DEPTHS

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups	2	4311.0011	2155.5005	6.8355	.0023
Within Groups	54	17028.3779	315.3403		
Total	56	21339.3789			

(*) Indicates significant differences which are shown in the lower triangle

G G G r r r p p p

1 2 3

Mean LAYER

62.8316 Grp 1
68.6158 Grp 2
83.4789 Grp 3

Homogeneous Subsets (highest and lowest means are not significantly different)

Subset 1

Group Grp 1 Grp 2

Mean 62.8316 68.6158

Subset 2

Group Grp 3

Mean 83.4789

4. Comparison of mean Zn content at different depths of high level samples

Variable: Zinc in high level samples

By Variable: DEPTHS

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups Within Groups Total	2 54 56	336544.8382 137293996.0 137630540.8	168272.4191 2542481.406	.0662	.9360

Levene Test for Homogeneity of Variances

Statistic df1 df2 2-tail Sig. .1583 2 54 .854

- No two groups are significantly different at the .050 level

Homogeneous Subsets (highest and lowest means are not significantly different)

Subset 1

Group

Grp 1

Grp 3

Grp 2

Mean

1082.8211

1190.6895

1270.3316

B. STATISTICAL ANALYSIS FOR LEAD AND ZINC AT DIFFERENT LINES

Group 1:

Element content in first line;

Group 2:

Element content in second line;

Group 3:

Element content in third line.

1. Comparison of mean Pb content at different lines

Variable: Lead By Variable: LINES

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups Within Groups Total	2 21 23	2902188.583 251629.3750 3153817.958	1451094.292 11982.3512	121.1026	.0000

(*) Indicates significant differences which are shown in the lower triangle

rrr

PP

Mean LINE

100.0000 Grp 3 418.2500 Grp 2

943.3750 Grp 1

Homogeneous Subsets (highest and lowest means are not significantly different)

Subset 1

Group

Grp 3

Mean

100.0000

Subset 2

Group

Grp 2

Mean

418.2500

Subset 3

Group

Grp 1

Mean

943.3750

2. Comparison of mean Zn content at different lines

Variable: Zinc By Variable: LINES

Analysis of Variance

Source	D.F.	Sum of Squares	Mean Squares	F Ratio	F Prob.
Between Groups	2	51023107.00	25511553.50	27.7168	.0000
Within Groups	21	19329185.50	920437.4048		
Total	23	70352292 50			

*) Indicates significant differences which are shown in the lower triangle

G G G r r r

ppp

3 2 1

Mean LINES

108.5000 Grp 3

1497.2500 Grp 2

3652.5000 Grp 1

Homogeneous Subsets (highest and lowest means are not significantly different)

Subset 1

Group

Grp 3

Mean

108.5000

Subset 2

Group

Grp 2

Mean

1497.2500

Subset 3

Group

Grp 1

Mean

3652.5000

C. DATA FOR CALCULATION OF CV FOR ANALYTICAL METHOD

1. The precision test for lead and zinc in soil samples

Table A.1 Data obtained from precision test for determination of lead in soil

1. duplication	2. duplication	Mean	SD	CV
169.3	181.3	175.3	8.49	4.84
64.8	58.7	61.8	4.31	6.99
61.4	68.4	64.9	4.95	7.63
79.9	82.6	81.3	1.91	2.35
537.2	497.5	517.4	28.07	5.43
48.3	52.3	50.3	2.83	5.62
69.4	76.3	72.9	4.89	6.71
95.8	89.2	92.5	4.67	5.05
330.2	318.2	324.2	8.49	2.62
86.4	77.6	82.0	6.22	7.59
61.8	55.9	58.8	4.23	7.19
450.3	495.3	472.8	31.82	6.73
380.2	363.7	372.0	11.67	3.14
112.4	99.1	105.8	9.40	8.89
104.9	96.2	100.6	6.15	6.12
			Mean CV	

Table A.2 Data obtained from precision test for determination of zinc in soil

1. duplication	2. duplication	Mean	SD	CV (%)
420.1	386.4	403.3	23.83	5.91
43.4	48.3	45.9	3.46	
440.2	420.8	430.5	13.72	3.19
68.6	75.2	71.9	4.67	6.49
158.3	146.3	152.3	8.49	
87.6	78.7	83.2	6.29	7.57
55.2	49.4	52.3	4.10	7.84
61.3	56.9	59.1	3.11	5.26
343.4	332.2	337.8	7.90	2.34
47.2	52.8	50.0	4.96	7.92
51.3	58.2	54.8	4.88	8.91
466.4	435.6	451.0	21.76	4.83
837.5	862.1	849.8	17.39	2.05
39.8	44.9	42.4	3.61	8.52
105.4	119.2	112.3	9.76	8.69
			Mean	CV (%) = 6.18

2. The precision test for lead and zinc in plant samples

Table A.3 Data obtained from precision test for determination of lead in plant tissue

duplication	Mean	SD	CV (%)
2.2	2.4	0.25	10.46
1.5	1.4	0.13	8.90
6.0	6.4	0.62	9.68
8.1	8.8	0.92	10.48
6.6	6.2	0.59	9.58
	2.2 1.5 6.0 8.1	2.2 2.4 1.5 1.4 6.0 6.4 8.1 8.8	2.2 2.4 0.25 1.5 1.4 0.13 6.0 6.4 0.62 8.1 8.8 0.92

Table A.4 Data obtained from precision test for determination of zinc in plant tissue

1. duplication	2. duplication	Mean	SD	CV (%)
35.7	39.2	37.5	2.47	6.41
23.5	26.1	24.8	1.87	9.69
35.9	29.5	32.7	4.53	7.34
31.6	28.3	30.0	2.33	8.01
40.8	32.6	36.7	5.80	6.54
			Mean C	V(%) = 7.60

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Name:

Le Thi Ngoc Quynh

Date of Birth:

July 10, 1966

Educational Background:

B. Eng. in Fermentation Chemistry and Bioengineering (1985 - 1990)

Prague Institute of Chemical Technologies

Prague - Czech Republic.

M. Sc. in Environmental Science (1996 - 1998)

Chiang Mai University

Chiang Mai 50200 - Thailand

Working Experience:

1991 - now: Researcher of

Northern Pesticide Control Center

National Department of Plant Protection

189B Tayson Street

Hanoi - Vietnam

Home address:

Phong 5 nha Z3. Phuong Bach Khoa Quan Hai ba Trung

Hanoi - Vietnam.