

CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations and theorems that will be used in the later chapters.

2.1 Topological Spaces

Definition 2.1.1 Let X be a set. A topology (or topological structure) in X is a family \mathfrak{I} of subset of X that satisfies :

- (i) Each union of members of \mathfrak{I} is also a member of \mathfrak{I} .
- (ii) Each finite intersection of members of \mathfrak{I} is also a member of \mathfrak{I} .
- (iii) \emptyset and X are members of \mathfrak{I} .

Each members of \mathfrak{I} is called *open*. A subset A of X is *closed* in X if $X-A$ is open.

Definition 2.1.2 A couple (X, \mathfrak{I}) consisting of a set X and a topology \mathfrak{I} in X is called a topological space.

Note that in the set $X \neq \emptyset$, let $\mathfrak{I} = P(X)$. Then (X, \mathfrak{I}) is topological space and it is called the discrete topological spaces.

Definition 2.1.3 Let X be topological space and $E \subseteq X$, the closure of E in X is the set $\overline{E} = \cap \{ K \subseteq X \mid K \text{ is closed and } E \subseteq K \}$.

Definition 2.1.4 Let X be a topological space and $E \subseteq X$, the interior of E in X is the set $\text{Int}(E) = \cup \{ G \subseteq X \mid G \text{ is open and } G \subseteq E \}$.

Definition 2.1.5 Let (X, \mathfrak{I}) be a topological space and $Y \subseteq X$, the collection $\mathfrak{I}' = \{ G \cap Y \mid G \in \mathfrak{I} \}$ is a topology for Y , called the *relative topology* for Y . The fact that a subset of X is being given this topology is signified by referring to it as a *subspace* of X .

Definition 2.1.6 Let (X, \mathfrak{I}) be a topological space. A family $\mathcal{B} \subseteq \mathfrak{I}$ is called a *basis* for \mathfrak{I} if each open set (that is, member of \mathfrak{I}) is the union of members of \mathcal{B} .

Definition 2.1.7 Let (X, \mathfrak{I}) be a topological space, a *subbasis* for \mathfrak{I} (or a subbasis for X) is a collection $S \subseteq \mathfrak{I}$ such that the collection of all finite intersections of elements from S forms a basis for \mathfrak{I} .

Theorem 2.1.8 Let $\mathcal{B} = \{ U_\mu \mid \mu \in I \}$ be any family of subsets of X that satisfies the following condition :

For each $(\mu, \lambda) \in I \times I$ and each $x \in U_\mu \cap U_\lambda$, there exists some U_α with $x \in U_\alpha \subseteq U_\mu \cap U_\lambda$.

Then the family $\mathfrak{I}(\mathcal{B})$ consisting of \emptyset, X and all unions of members of \mathcal{B} , is a topology for X ; that is, $\mathcal{B} \cup \{\emptyset\} \cup \{X\}$ is a basis for some topology. $\mathfrak{I}(\mathcal{B})$ is unique and is the smallest topology containing \mathcal{B} .

Proof. see [4] page 67.

2.2 Continuous Functions

Definition 2.2.1 Let (X, \mathfrak{I}_X) and (Y, \mathfrak{I}_Y) be topological spaces. A map $f: X \rightarrow Y$ is called *continuous* if the inverse image of each open set in Y is open in X .

Theorem 2.2.2 Let X, Y be topological spaces and $f: X \rightarrow Y$ a map. The following statement are equivalent:

- (i) f is continuous.
- (ii) The inverse image of each closed set in Y is closed in X .
- (iii) If $E \subseteq X$, then $f(\overline{E}) \subseteq \overline{f(E)}$.

Proof. see [2] page 59.

Theorem 2.2.3 Let X, Y and Z be topological spaces. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then $g \circ f: X \rightarrow Z$ is continuous.

Proof. see [8] page 45.

Definition 2.2.4 Let X and Y be topological spaces. A map $f: X \rightarrow Y$ is called *open* if image of each open in X is open in Y .

2.3 Product Spaces

Definition 2.3.1 Let $\{X_\alpha \mid \alpha \in I\}$ be a family of sets. The *Cartesian product* of the sets X_α is the set

$$\prod_{\alpha \in I} X_\alpha = \left\{ f: I \rightarrow \bigcup_{\alpha \in I} X_\alpha \mid f(\alpha) \in X_\alpha \text{ for each } \alpha \in I \right\}.$$

In practice the value of $f \in \prod_{\alpha \in I} X_\alpha$ at α is usually denoted by f_α rather than $f(\alpha)$ and f_α is referred to as the α th coordinate of f and f is denoted by $(x_\alpha)_{\alpha \in I}$. The space X_α is the α th factor space.

The map $\pi_\beta : \prod_{\alpha \in I} X_\alpha \rightarrow X_\beta$ defined by $\pi_\beta((x_\alpha)_{\alpha \in I}) = x_\beta$ is called the *projection map* of $\prod_{\alpha \in I} X_\alpha$ on X_β or more simply the α th projection map.

Definition 2.3.2 Let $\{X_\alpha \mid \alpha \in I\}$ be any family of topological spaces. For each $\alpha \in I$, let \mathfrak{I}_α be the topology for X_α . The cartesian product topology in $\prod_{\alpha \in I} X_\alpha$ is that having $S = \{\pi_\beta(U_\beta) \mid U_\beta \in \mathfrak{I}_\beta, \beta \in I\}$ as a subbasis.

Theorem 2.3.3 Let $\{X_\alpha \mid \alpha \in I\}$ be any family of topological spaces. Then for each fixed $\beta \in I$, the projection $\pi_\beta : \prod_{\alpha \in I} X_\alpha \rightarrow X_\beta$ is a continuous open onto.

Proof. see [4] page 101.

Theorem 2.3.4 Let $\{Y_\alpha \mid \alpha \in I\}$ be any family of topological spaces, and $f : X \rightarrow \prod_{\alpha \in I} Y_\alpha$ a map. Then f is continuous if and only if $\pi_\alpha \circ f$ is continuous for each $\alpha \in I$.

Proof. see [4] page 101.

Theorem 2.3.5 Let $\{X_\alpha \mid \alpha \in I\}$ and $\{Y_\alpha \mid \alpha \in I\}$ be any family of topological spaces. For each $\alpha \in I$, let $f_\alpha : X_\alpha \rightarrow Y_\alpha$ be a map. Define $\prod f_\alpha : \prod_{\alpha \in I} X_\alpha \rightarrow \prod_{\alpha \in I} Y_\alpha$ by $(x_\alpha)_{\alpha \in I} \mapsto (f_\alpha(x_\alpha))_{\alpha \in I}$. Then :

- (i) If each f_α is continuous, so also is $\prod f_\alpha$.
- (ii) If each f_α is an open map, and all but at most finitely many are surjective, then $\prod f_\alpha$ is also an open map.

Proof. see [4] page 102.

2.4 Separation Axioms

Definition 2.4.1 A topological space X is a T_o – space if whenever x and y are distinct points in X , there is an open set containing one and not the other.

Definition 2.4.2 A topological space X is a T_1 – space if whenever x and y are distinct points in X , there is a neighborhood of each not containing the other.

Theorem 2.4.3 A topological space X is a T_1 – space if and only if each singleton subset of X is closed.

Proof. see [2] page 80.

Definition 2.4.4 A topological space X is a T_2 – space (Hausdorff) if whenever x and y are distinct points of X , there are disjoint open sets U and V with $x \in U$ and $y \in V$.

2.5 Connected Spaces

Definition 2.5.1 A topological space Y is *connected* if it is not the union of two nonempty disjoint open sets.

Theorem 2.5.2 Let (X, \mathfrak{J}) be any topological space. Then the following statement are equivalent.

- (i) X is connected.
- (ii) X cannot be expressed as the union of two disjoint nonempty closed subsets.
- (iii) The only subsets of X which are open and closed are X and \emptyset .
- (iv) Let $Y = \{0, 1\}$ have the discrete topology. Then there is no continuous function from X onto Y .

Proof. see [5] page 185.

Theorem 2.5.3 Let X be connected and Y be topological space. If $f: X \rightarrow Y$ is continuous and onto, then Y is connected.

Proof. see [2] page 100.

2.6 Regular Generalized Closed Sets

Definition 2.6.1 A subset A of a topological space X is said to be *regular open* if $A = \text{Int}(\overline{A})$.

Definition 2.6.2 A subset A of a topological space X is said to be *regular closed* if $A = \overline{\text{Int}(A)}$.

Definition 2.6.3 A subset A of a topological space X is called *g-closed* in X if $\overline{A} \subseteq G$ whenever $A \subseteq G$ and G is open in X . A subset A is called *g-open* in X if its complement, A^c , is *g-closed*.

Theorem 2.6.4 *Let X be topological space and $A \subseteq X$. Then A is g-open if and only if $F \subseteq \text{Int}(A)$ whenever F is closed and $F \subseteq A$.*

Proof. see [6] page 206.

Definition 2.6.5 A subset A of a topological space X is called *r-g-closed* in X if $\bar{A} \subseteq G$ whenever $A \subseteq G$ and G is regular open in X . A subset A is called *r-g-open* in X if its complement, A^c , is r-g-closed.

Theorem 2.6.6 *Let X be a topological space and $A, B \subseteq X$. If A and B are r-g-closed sets, then $A \cup B$ is r-g-closed.*

Proof. see [7] page 212.

Theorem 2.6.7 *Let X be topological space and $B \subseteq A \subseteq X$. If B is r-g-closed set relative to A and A is a g-closed open subset in X , then B is r-g-closed in X .*

Proof. see [7] page 212.

Theorem 2.6.8 *Let X be topological space and $A \subseteq X$. Then A is r-g-open if and only if $F \subseteq \text{Int}(A)$ whenever F is regular closed and $F \subseteq A$.*

Proof. see [7] page 215.