CHAPTER II
PRELIMINARIES

In this chapter, we give some definitions, notations and theorems that

will be used in the later chapters.
2.1 Topological Spaces

Definition 2.1.1 Let X be a set. 4 topology (or topological structure )in X is a
family 3 of subset of X that satisfies :
(i) Each union of members of 3 is also a member of 3.
(ii) Each finite intersection of members of 3 is also a member of 3.
(iii) & and X are members of .
Each members of J is called open. A subset 4 of X is closed in X if

X-4 is open.

Definition 2.1.2 A couple (X,3) consisting of a set X and a topology J in X

is called a topological space.

Note that in the set X= @ ,let I=P(X). Then (X,J) is topological

space and it is called the discrete topological spaces.

Definition 2.1.3 Let X be topological space and E — X , the closure of E in X

is the set E_:m{KgX,Kis closed and E_C_K}.




Definition 2.1.4 Let X be a topological space and £ X , the interior of E in

X is the set Int(E)=u{GgX] G is open and GgE}.

Definition 2.1.5 Let (X,3) be a topological space and Y < X, the collection
I ;{ GnY I GeJ } is a topology for Y, called the relative topology for V.
The fact that a subset of X is being given this topology is signified by

referring to it as a subspace of X.

Definition 2.1.6 Let (X,3) be a topological space. A family B 3 is called a

basis for 3 if each open set ( that is, member of J)is the union of members

of B.

Definition 2.1.7 Let (X,3) be a topological space, a subbasis for T (or a
subbasis for X' ) is a collection S < I such that the collection of all finite

intersections of elements from S forms a basis for J

Theorem 2.1.8 Let B = {U pl,uel} be any family of subsets of X that
satisfies the following condition :
For each (u,A)e IxI and each xelU,nU,, there exists some U,
with xelU, cU,nU,,
Then the family 3(B) consisting of &, X and all unions of members of B, is a
topology for X ; that is, B U {@ } U {X } is a basis for some topology. I(B) is
unique and is the smallest topology containing 8.

Proof. seel4] page 67.



2.2 Continuous Functions

Definition 2.2.1 Let (X,3y) and (¥,3y) be a topological spaces. A map
f:X =Y is called continuous if the inverse image of each open set in Y is

open in X.

Theorem 2.2.2 Let X Y be topological spaces and f:X —Y a map. The
Jollowing statement are equivalent :

(i) [ is continuous.

(ii) The inverse image of each closed set in Y is closed in X

(i) If Ec X, then f(E)c f(E).
Proof . see[2] page 59.

Theorem 2.2.3 Let X, Y and Z be topological spaces. If f:X —Y and
g:Y —> Z are continuous, then go f: X — Z is continuous.

Proof. see[8] page 45.

Definition 2.2.4 Let X and Y be topological spaces. A map f: X — Y is called

open if image of each open in X is open in Y.
2.3 Product Spaces

Definition 2.3.1 Let {Xa Iae[ } be a family of sets. The Cartesian product

of the sets X, is the set

HXa = {f:l—):EJIX(J flaye X, for each ae[}.

aef



In practice the value of f e HX . at « 1is usualy denoted by £, rather than

oef

f(a) and f, is refered to as the ath coordinate of fand f is denoted by

(X, )ae; - The space X_ is the ath factor space.

The map =z, :HXa — X, defined by 7,((x,),,)=x, is called the

ael

projection map of HXH on X, or more simply the ath projection map.

aef

Definition 2.3.2 Let {Xa |o:e] } be any family of topological spaces. For each

ael , let 3, be the topology for X, . The cartesian product topology in

HXa 1s that having § = {xﬁ(Uﬁ)IUﬂ € Sﬁ,ﬂel} as a subbasis.

acl

Theorem 2.3.3 Let { X,

ael } be any family of topological spaces. Then for

each fixed fel, the projection =, :HX « > X, Is a continuous open onto.

ael

Proof. seel[4] page 101.

Theorem 2.3.4 Let {Yalael } be any family of topological spaces, and

X —>HYa a map. Then [ is continuous if and only if 7 o f is continuous

ael

for each ael.

Proof. see 4] page 101.

Theorem 2.3.5 Let {X a Ia el } and { Y, ] ael } be any family of topological

spaces. For each acl,let f,: X, —>Y, be amap. Deﬁnera :HXa —>HYQ

acl acf

by (%0 )aet = (fo (¥ Dpes - Then:



(1) If each f, is continuous, so also is H I -
(i) If each f, isan open map, and all but at most finitely many are
surjective, then H f. is also an open map.

Proof. see 4] page 102.

2.4 Separation Axioms

Definition 2.4.1 A topological space X is a 7, —space if whenever x and y are

distinct points in X, there is an open set containing one and not the other.

Definition 2.4.2 A topological space X is a 7, —space if whenever x and y are

distinct points in X, there is a neighborhood of each not containing the other.

Theorem 243 4 topological space X is a T,—space if and only if each
singleton subset of X is closed.

Proof . see (2] page 80.

Definition 2.4.4 A topological space X is a 7, —space ( Hausdorff) if whenever
x and y are distinct points of X, there are disjoint open sets U and V with
xelU andyeV .

2.5 Connected Spaces

Defmnition 2.5.1 A topological space Y is connected if it is not the union of

two nonempty disjoint open sets.




Theorem 2.5.2 Let (X,3) be any topological space. Then the following
Statement are equivalent.
(i) X is connected.

(i) X cannot be expressed as the union of two disjoint nonempry

closed subsets.
(iif) The only subsets of X which are open and closed are X and @,
(iv) Let Y= {0, 1} have the discrete topology. Then there is no
continuous function from X onto Y.

Proof. see[5] page 185.

Theorem 2.5.3 Let X be connected and Y be topological space. If f : X > VY is
continuous and onto, then Y is connected.

Proof . see[2] page 100.
2.6 Regular Generalized Closed Sets

Definition 2.6.1 A subset 4 of a topological space X is said to be regular

open if 4= Int(Z).

Definition 2.6.2 A subset 4 of a topological space X is said to be regular
closed if 4= Int(A4).

Definition 2.6.3 A subset 4 of a topological space X is called g-closed in X if
A= G whenever Ac G and G is open in X. A subset 4 is called g-open in

X if its complement, 4°, is g-closed.



Theorem 2.6.4 Let X be topological space and Ac X. Then A is g-open if
and only if F < Int(A) whenever F is closed and F c A.

Proof . see[6] page 206.

Definition 2.6.5 A subset 4 of a topological space X is called r-g-closed in X
if AcG whenever A< G and G is regular open in X. A subset A is called

r-g-open in X if its complement, 4, is r-g-closed.

Theorem 2.6.6 Let X be a topological space and A,BC X. If A and B are
r-g-closed sets, then AU B is r-g-closed.

Proof . see[7] page 212.

Theorem 2.6.7 Let X be topological space and BC Ac X.If B is r-g-closed
set relative to A and A is ag-closed open subsetin X, then B is r-g-closed in X,

Proof. seel|7] page 212.

Theorem 2.6.8 Let X be topological space and Ac X. Then A is r-g-open if
and only if F  Int(A4) whenever F is regular closed and F C A.

Proof . sec[7] page 215.



