

CHAPTER III

REGULAR GENERALIZED CONTINUOUS FUNCTIONS

In this chapter, we study relations among continuous, g-continuous, gc-irresolute, r-g-continuous and r-g-irresolute functions.

3.1 Continuous Functions and Generalized Continuous Functions

Definition 3.1.1 A map $f: X \rightarrow Y$ from a topological space X into a topological space Y is called *g-continuous* if the inverse image of closed set in Y is g-closed in X .

Theorem 3.1.2 Let X and Y be topological spaces and $f: X \rightarrow Y$ is g-continuous if and only if the inverse image of every open in Y is g-open in X .

Proof. (\Rightarrow) Let G be any open set in Y . Then $Y - G$ is closed in Y . Since f is g-continuous, $f^{-1}(Y - G)$ is g-closed in X . But $f^{-1}(Y - G) = X - f^{-1}(G)$. This implies that $f^{-1}(G)$ is g-open in X .

(\Leftarrow) Let F be any closed set in Y . Then $Y - F$ is open in Y . By assumption, $f^{-1}(Y - F)$ is g-open in X . But $f^{-1}(Y - F) = X - f^{-1}(F)$. This implies that $f^{-1}(F)$ is g-closed in X . Hence f is g-continuous.

Theorem 3.1.3 Let X and Y be topological spaces. If $f: X \rightarrow Y$ is continuous, then f is g-continuous but not conversely.

Proof. Let F be a closed set in Y . Since f is continuous, $f^{-1}(F)$ is closed in X which implies that $f^{-1}(F)$ is g-closed in X . Hence f is g-continuous. The converse need not be true as seen by the following example.

Example 3.1.4 Let $X = \{a, b, c\}$, $\mathfrak{I} = \{\emptyset, \{a\}, X\}$, $Y = \{p, q\}$ and $\mathfrak{I}' = \{\emptyset, \{q\}, Y\}$. Let $f: (X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I}')$ be defined by $f(a) = f(c) = q$ and $f(b) = p$. It is easy to see that f is g-continuous but it is not continuous. Since $\{q\}$ is open in Y but $f^{-1}(\{q\}) = \{a, c\}$ is not open in X .

Definition 3.1.5 A topological space X is called $T_{\frac{1}{2}}$ -space if every g-closed set in X is closed in X .

Proposition 3.1.6 A topological space X is a $T_{\frac{1}{2}}$ -space if and only if each singleton subset of X is closed or open.

Proof. (\Rightarrow) Let $x \in X$. Suppose that $\{x\}$ is not closed. Therefore $X - \{x\}$ is not open. Since $X - \{x\} \subseteq X$, $\overline{X - \{x\}} \subseteq X$, it implies that $X - \{x\}$ is g-closed. But X is a $T_{\frac{1}{2}}$ -space, so $X - \{x\}$ is closed, $\{x\}$ is open.

(\Leftarrow) Let A be a g-closed in X and let $x \in \overline{A}$. If $\{x\}$ is open, we have that $\{x\} \cap A \neq \emptyset$, so $x \in A$. If $\{x\}$ is closed. We shall shows that $\overline{\{x\}} \cap A \neq \emptyset$. Suppose that $\overline{\{x\}} \cap A = \emptyset$, we have that $A \subseteq X - \overline{\{x\}}$. Since A is g-closed, therefore $\overline{A} \subseteq X - \overline{\{x\}}$. But $X - \overline{\{x\}} \subseteq X - \{x\}$. Hence $\{x\} \cap \overline{A} = \emptyset$, so $x \notin \overline{A}$, which is a contradiction. Therefore $\overline{\{x\}} \cap A \neq \emptyset$, $\{x\} \cap A \neq \emptyset$, $x \in A$. Hence $\overline{A} \subseteq A$. But $A \subseteq \overline{A}$, $A = \overline{A}$, it implies that A is closed. Therefore X is a $T_{\frac{1}{2}}$ -space.

Theorem 3.1.7 Let X be a $T_{\frac{1}{2}}$ -space and Y be a topological space. Then $f: X \rightarrow Y$ is continuous if and only if f is g-continuous.

Proof. (\Rightarrow) By Theorem 3.1.3.

(\Leftarrow) Let F be a closed set in Y . Since f is g -continuous, $f^{-1}(F)$ is g -closed in X . Since X is a $T_{\frac{1}{2}}$ -space, we have $f^{-1}(F)$ is closed in X . Hence f is continuous.

Theorem 3.1.8 *Let X, Y and Z be topological spaces. If $f : X \rightarrow Y$ is g -continuous and $g : Y \rightarrow Z$ is continuous, then the composition $g \circ f : X \rightarrow Z$ is g -continuous.*

Proof. Let F be any closed set in Z . Since g is continuous, $g^{-1}(F)$ is closed in Y . Since f is g -continuous, we have $f^{-1}(g^{-1}(F))$ is g -closed in X . Hence $g \circ f$ is g -continuous.

In general, the composition of g -continuous need not be g -continuous as we will see in the next example.

Example 3.1.9 Let $X=Y=Z=\{a,b,c\}$, $\mathfrak{J}=\{\emptyset, \{a,b\}, X\}$, $\mathfrak{J}'=\{\emptyset, \{a\}, \{b,c\}, Y\}$ and $\mathfrak{J}''=\{\emptyset, \{a,c\}, Z\}$. Let $f : (X, \mathfrak{J}) \rightarrow (Y, \mathfrak{J}')$ be defined by $f(a)=c$, $f(b)=b$ and $f(c)=c$. Let $g : (Y, \mathfrak{J}') \rightarrow (Z, \mathfrak{J}'')$ be the identity map. It is easy to see that both f and g are g -continuous but $g \circ f$ is not g -continuous because $(g \circ f)^{-1}(\{b\})=\{b\}$ is not g -closed in X .

Theorem 3.1.10 *Let X and Z be topological spaces and Y be a $T_{\frac{1}{2}}$ -space.*

If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are g -continuous, then $g \circ f : X \rightarrow Z$ is g -continuous.

Proof. Let F be any closed set in Z . Since g is g -continuous, $g^{-1}(F)$ is g -closed in Y . But Y is $T_{\frac{1}{2}}$ -space, so $g^{-1}(F)$ is closed in Y . Since f is g -continuous, it implies that $f^{-1}(g^{-1}(F))$ is g -closed in X . Hence $g \circ f$ is g -continuous.

3.2 Generalized Continuous Functions and gc-irresolute Functions

Definition 3.2.1 A map $f : X \rightarrow Y$ from a topological space X into a topological space Y is called *gc-irresolute* if the inverse image of g-closed set in Y is g-closed in X .

Theorem 3.2.2 Let X and Y be topological spaces and $f : X \rightarrow Y$ is gc-irresolute if and only if the inverse image of every g-open in Y is g-open in X .

Proof. (\Rightarrow) Let G be any g-open set in Y . Then $Y - G$ is g-closed in Y . Since f is gc-irresolute, $f^{-1}(Y - G)$ is g-closed in X . But $f^{-1}(Y - G) = X - f^{-1}(G)$. This implies that $f^{-1}(G)$ is g-open in X .

(\Leftarrow) Let F be any g-closed set in Y . Then $Y - F$ is g-open in Y . By assumption, $f^{-1}(Y - F)$ is g-open in X . But $f^{-1}(Y - F) = X - f^{-1}(F)$. This implies that $f^{-1}(F)$ is g-closed in X . Hence f is gc-irresolute.

Theorem 3.2.3 Let X and Y be topological spaces. If $f : X \rightarrow Y$ is gc-irresolute, then f is g-continuous but not conversely.

Proof. Let F be a closed set in Y . Then F is g-closed in Y . Since f is gc-irresolute, $f^{-1}(F)$ is g-closed in X . Hence f is g-continuous. The converse need not be true as seen by the following example.

Example 3.2.4 Let $X = Y = \{a, b, c\}$, $\mathfrak{I} = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathfrak{I}' = \{\emptyset, \{a\}, Y\}$. Let $f : (X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I}')$ be defined by $f(a) = f(c) = a$ and $f(b) = b$. Then f is g-continuous. However, $\{a, c\}$ is g-closed in Y but $f^{-1}(\{a, c\})$ is not g-closed in X . Therefore f is not gc-irresolute.

Theorem 3.2.5 *Let X, Y and Z be topological spaces. If $f : X \rightarrow Y$ is gc-irresolute and $g : Y \rightarrow Z$ is g-continuous, then the composition $g \circ f : X \rightarrow Z$ is g-continuous.*

Proof. Let F be any closed set in Z . Since g is g-continuous, $g^{-1}(F)$ is g-closed in Y . Since f is gc-irresolute, we have $f^{-1}(g^{-1}(F))$ is g-closed in X . Hence $g \circ f$ is g-continuous.

Theorem 3.2.6 *Let X and Y be topological spaces. If $f : X \rightarrow Y$ is closed and g-continuous, then f is gc-irresolute.*

Proof. Let G be a g-open set in Y . Let F be closed set in X such that $F \subseteq f^{-1}(G)$. Then $f(F) \subseteq G$. Since f is closed, $f(F)$ is closed in Y . By Theorem 2.6.4, we have $f(F) \subseteq \text{Int}(G)$. Hence $F \subseteq f^{-1}(\text{Int}(G))$. Since f is g-continuous and $\text{Int}(G)$ is open in Y , we have $f^{-1}(\text{Int}(G))$ is g-open in X . It follows by Theorem 2.6.4 that $F \subseteq \text{Int}(f^{-1}(\text{Int}(G))) \subseteq \text{Int}(f^{-1}(G))$. Therefore by Theorem 2.6.4, $f^{-1}(G)$ is g-open in X . Hence f is gc-irresolute.

Theorem 3.2.7 *Let X, Y and Z be topological spaces. If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are gc-irresolute, then $g \circ f : X \rightarrow Z$ is gc-irresolute.*

Proof. It follows directly from the definition.

3.3 Continuous Functions and Regular Generalized Continuous Functions

Definition 3.3.1 A map $f : X \rightarrow Y$ from a topological space X into a topological space Y is called *r-g-continuous* if the inverse image of closed set in Y is r-g-closed in X .

Theorem 3.3.2 Let X and Y be topological spaces and $f : X \rightarrow Y$ is r-g-continuous if and only if the inverse image of every open in Y is r-g-open in X .

Proof. (\Rightarrow) Let G be any open set in Y . Then $Y - G$ is closed in Y . Since f is r-g-continuous, $f^{-1}(Y - G)$ is r-g-closed in X . But $f^{-1}(Y - G) = X - f^{-1}(G)$. This implies that $f^{-1}(G)$ is r-g-open in X .

(\Leftarrow) Let F be any closed set in Y . Then $Y - F$ is open in Y . By assumption, $f^{-1}(Y - F)$ is r-g-open in X . But $f^{-1}(Y - F) = X - f^{-1}(F)$. This implies that $f^{-1}(F)$ is r-g-closed in X . Hence f is r-g-continuous.

Theorem 3.3.3 Let X and Y be topological spaces. If $f : X \rightarrow Y$ is continuous, then f is r-g-continuous but not conversely.

Proof. Let F be a closed set in Y . Since f is continuous, $f^{-1}(F)$ is closed in X which implies that $f^{-1}(F)$ is r-g-closed in X . Hence f is r-g-continuous.

The converse is not true as seen by the following example.

Example 3.3.4 Let $X = \{a, b, c\}$, $\mathfrak{I} = \{\emptyset, \{a, b\}, X\}$, $Y = \{p, q\}$ and $\mathfrak{I}' = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I}')$ be defined by $f(a) = q$ and $f(b) = f(c) = p$. It is easy to see that f is r-g-continuous but it is not continuous. Since $\{p\}$ is open in Y but $f^{-1}(\{p\}) = \{b, c\}$ is not open in X .

Definition 3.3.5 A topological space X is called $T_{\frac{1}{2}}^* - space$ if every r-g-closed set in X is closed in X .

Theorem 3.3.6 Let X be a $T_{\frac{1}{2}}^*$ -space and Y be a topological space. Then $f : X \rightarrow Y$ is continuous if and only if f is r-g-continuous.

Proof. (\Rightarrow) By Theorem 3.3.3.

(\Leftarrow) Let F be a closed set in Y . Since f is r-g-continuous, $f^{-1}(F)$ is r-g-closed in X . Since X is a $T_{\frac{1}{2}}^*$ -space, we have $f^{-1}(F)$ is closed in X . Hence f is continuous.

Theorem 3.3.7 Let X, Y and Z be topological spaces. If $f : X \rightarrow Y$ is r-g-continuous and $g : Y \rightarrow Z$ is continuous, then the composition $g \circ f : X \rightarrow Z$ is r-g-continuous.

Proof. Let F be any closed set in Z . Since g is continuous, $g^{-1}(F)$ is closed in Y . Since f is r-g-continuous, we have $f^{-1}(g^{-1}(F))$ is r-g-closed in X . Hence $g \circ f$ is r-g-continuous.

In general the composition of r-g-continuous need not be r-g-continuous as seen in the next example.

Example 3.3.8 Let $X = Y = Z = \{a, b, c\}$, $\mathfrak{J} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$, $\mathfrak{J}' = \{\emptyset, \{a\}, Y\}$ and $\mathfrak{J}'' = \{\emptyset, \{b, c\}, Z\}$. Let $f : (X, \mathfrak{J}) \rightarrow (Y, \mathfrak{J}')$ be defined by $f(a) = a$, $f(b) = c$ and $f(c) = b$. Let $g : (Y, \mathfrak{J}') \rightarrow (Z, \mathfrak{J}'')$ be the identity map. Then f and g are r-g-continuous but $g \circ f$ is not r-g-continuous because $(g \circ f)^{-1}(\{a\}) = \{a\}$ is not r-g-closed in X .

Theorem 3.3.9 Let X and Z be topological spaces and Y be a $T_{\frac{1}{2}}^*$ -space. If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are r-g-continuous, then the composition $g \circ f : X \rightarrow Z$ is r-g-continuous.

Proof. Let F be any closed set in Z . Since g is r-g-continuous, $g^{-1}(F)$ is r-g-closed in Y . But Y is $T_{\frac{1}{2}}^*$ -space, so $g^{-1}(F)$ is closed in Y . Since f is r-g-continuous, it implies that $f^{-1}(g^{-1}(F))$ is r-g-closed in X . Hence $g \circ f$ is r-g-continuous.

Theorem 3.3.10 *Let X and Y be topological spaces. Let $A, B \subseteq X$ be g-closed and open in X such that $X = A \cup B$ and let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be r-g-continuous maps such that $f(x) = g(x)$ for every $x \in A \cap B$. Let $h: X \rightarrow Y$ be defined by $h(x) = f(x)$ if $x \in A$ and $h(x) = g(x)$ if $x \in B$. Then h is r-g-continuous.*

Proof. Let F be a closed set in Y . Clearly $h^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$. Since $f: A \rightarrow Y$ and $g: B \rightarrow Y$ are r-g-continuous, we have $f^{-1}(F)$ and $g^{-1}(F)$ are r-g-closed in A and B respectively. Since A is g-closed and open in X , we have by Theorem 2.6.7 that $f^{-1}(F)$ is r-g-closed in X . Similarly, $g^{-1}(F)$ is r-g-closed in X . By Theorem 2.6.6, $f^{-1}(F) \cup g^{-1}(F)$ is r-g-closed in X . Therefore, $h^{-1}(F)$ is r-g-closed in X .

3.4 Generalized Continuous and Regular Generalized Continuous Functions

Theorem 3.4.1 *Let X and Y be topological spaces. If $f: X \rightarrow Y$ is g-continuous, then f is r-g-continuous but not conversely.*

Proof. Let F be a closed set in Y . Since f is g-continuous, $f^{-1}(F)$ is g-closed in X which implies that $f^{-1}(F)$ is r-g-closed in X . Hence f is r-g-continuous.

The converse is not true as seen by the following example.

Example 3.4.2 Let $X = Y = \{a, b, c\}$, $\mathfrak{I} = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathfrak{I}' = \{\emptyset, \{a, c\}, Y\}$.

Let $f : (X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I}')$ be the identity map. It is easy to see that f is r-g-continuous but f is not g-continuous because $f^{-1}(\{b\}) = \{b\}$ is not g-closed in X .

Definition 3.4.3 A topological space X is called T_{rg} -space if every r-g-closed set in X is g-closed in X .

Theorem 3.4.4 Let X be a T_{rg} -space and Y be a topological space. Then $f : X \rightarrow Y$ is g-continuous if and only if f is r-g-continuous.

Proof. (\Rightarrow) By Theorem 3.4.1.

(\Leftarrow) Let F be a closed set in Y . Since f is r-g-continuous, $f^{-1}(F)$ is r-g-closed in X . Since X is a T_{rg} -space, we have $f^{-1}(F)$ is g-closed in X . Hence f is g-continuous.

Theorem 3.4.5 Let X and Z be topological spaces and Y be a $T_{\frac{1}{2}}$ -space.

If $f : X \rightarrow Y$ is r-g-continuous and $g : Y \rightarrow Z$ is g-continuous, then $g \circ f : X \rightarrow Z$ is r-g-continuous.

Proof. Let F be any closed set in Z . Since g is g-continuous, $g^{-1}(F)$ is g-closed in Y . But Y is $T_{\frac{1}{2}}$ -space, so $g^{-1}(F)$ is closed in Y . Since f is r-g-continuous, we have $f^{-1}(g^{-1}(F))$ is r-g-closed in X . Hence $g \circ f$ is r-g-continuous.

3.5 Regular Generalized Continuous Functions and r-g-irresolute Functions

Definition 3.5.1 A map $f : X \rightarrow Y$ from a topological space X into a topological space Y is called *r-g-irresolute* if the inverse image of r-g-closed set in Y is r-g-closed in X .

Theorem 3.5.2 Let X and Y be topological spaces and $f : X \rightarrow Y$ is r-g-irresolute if and only if the inverse image of every r-g-open in Y is r-g-open in X .

Proof. (\Rightarrow) Let G be any r-g-open set in Y . Then $Y - G$ is r-g-closed in Y . Since f is r-g-irresolute, $f^{-1}(Y - G)$ is r-g-closed in X . But $f^{-1}(Y - G) = X - f^{-1}(G)$. This implies that $f^{-1}(G)$ is r-g-open in X .

(\Leftarrow) Let F be any r-g-closed set in Y . Then $Y - F$ is r-g-open in Y . By assumption, $f^{-1}(Y - F)$ is r-g-open in X . But $f^{-1}(Y - F) = X - f^{-1}(F)$. This implies that $f^{-1}(F)$ is r-g-closed in X . Hence f is r-g-irresolute.

Theorem 3.5.3 Let X and Y be topological spaces. If $f : X \rightarrow Y$ is r-g-irresolute, then f is r-g-continuous but not conversely.

Proof. Let F be a closed set in Y . Then F is r-g-closed in Y . Since f is r-g-irresolute, $f^{-1}(F)$ is r-g-closed in X . Hence f is r-g-continuous.

The converse need not be true as seen by the following example.

Example 3.5.4 Let $X = Y = \{a, b, c\}$, $\mathfrak{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathfrak{I}' = \{\emptyset, \{a, b\}, Y\}$. Let $f : (X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I}')$ be defined by $f(a) = f(c) = c$ and $f(b) = b$. Then f is r-g-continuous. However, $\{b\}$ is r-g-closed in Y but $f^{-1}(\{b\}) = \{b\}$ is not r-g-closed in X . Hence f is not r-g-irresolute.

Theorem 3.5.5 Let X , Y and Z be topological spaces. If $f : X \rightarrow Y$ is r-g-irresolute and $g : Y \rightarrow Z$ is r-g-continuous, then the composition $g \circ f : X \rightarrow Z$ is r-g-continuous.

Proof. Let F be any closed set in Z . Since g is r-g-continuous, $g^{-1}(F)$ is r-g-closed in Y . Since f is r-g-irresolute, we have $f^{-1}(g^{-1}(F))$ is r-g-closed in X . Hence $g \circ f$ is r-g-continuous.

Definition 3.5.6 A map $f : X \rightarrow Y$ from a topological space X into a topological space Y is called *regular closed* if $f(F)$ is regular closed in Y for every closed set F in X .

Theorem 3.5.7 Let X and Y be topological spaces. If $f : X \rightarrow Y$ is regular closed and r-g-continuous, then f is r-g-irresolute.

Proof. Let G be a r-g-open set in Y . Let F be regular closed set in X such that $F \subseteq f^{-1}(G)$. Then $f(F) \subseteq G$. Since f is regular closed, $f(F)$ is regular closed in Y . By Theorem 2.6.8, we have $f(F) \subseteq \text{Int}(G)$. Hence $F \subseteq f^{-1}(\text{Int}(G))$. Since f is r-g-continuous and $\text{Int}(G)$ is open in Y , we have $f^{-1}(\text{Int}(G))$ is r-g-open in X . It follows by Theorem 2.6.8 that $F \subseteq \text{Int}(f^{-1}(\text{Int}(G))) \subseteq \text{Int}(f^{-1}(G))$. Therefore by Theorem 2.6.8, $f^{-1}(G)$ is r-g-open in X . Hence f is r-g-irresolute.

Theorem 3.5.8 *Let X , Y and Z be topological spaces. If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are r-g-irresolute, then $g \circ f : X \rightarrow Z$ is r-g-irresolute.*

Proof. It follows directly from the definition.

3.6 Regular Generalized Continuous Functions and gc-irresolute Functions

Theorem 3.6.1 *Let X and Y be topological spaces. If $f : X \rightarrow Y$ is gc-irresolute, then f is r-g-continuous but not conversely.*

Proof. Let F be a closed set in Y . Then F is g-closed in Y . Since f is gc-irresolute, $f^{-1}(F)$ is g-closed in X which implies that $f^{-1}(F)$ is r-g-closed in X . Hence f is r-g-continuous.

The converse need not be true as seen by the following example.

Example 3.6.2 Let $X = \{a, b, c\}$, $\mathfrak{I} = \{\emptyset, \{a\}, X\}$, $Y = \{p, q\}$ and $\mathfrak{I}' = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \mathfrak{I}) \rightarrow (Y, \mathfrak{I}')$ be defined by $f(a) = q$ and $f(b) = f(c) = p$. Then f is r-g-continuous but f is not gc-irresolute because $f^{-1}(\{q\}) = \{a\}$ is not g-closed in X .

Theorem 3.6.3 *Let X be a T_{rg} -space and Y be topological spaces.*

If $f : X \rightarrow Y$ is bijective, open and r-g-continuous, then f is gc-irresolute.

Proof. Let F be any g-closed set in Y . Let U be open set in X such that $f^{-1}(F) \subseteq U$. Then $F \subseteq f(U)$ (because f is onto). Since $f(U)$ is open and F is g-closed in Y , we have $\overline{F} \subseteq f(U)$ which implies that $f^{-1}(\overline{F}) \subseteq U$

(because f is injective). Since f is r-g-continuous, $f^{-1}(\bar{F})$ is r-g-closed in X . But X is T_{rg} -space, so $f^{-1}(\bar{F})$ is g-closed in X , it implies that $\overline{f^{-1}(\bar{F})} \subseteq U$, hence $\overline{f^{-1}(F)} \subseteq U$. This shows that f is gc-irresolute.

Example 3.6.4 Let $X = Y = \{a, b, c\}$, $\mathfrak{I}_X = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\mathfrak{I}_Y = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let $f: (X, \mathfrak{I}_X) \rightarrow (Y, \mathfrak{I}_Y)$ be identity map. It is easy to see that X is T_{rg} -space and f is bijective, open and r-g-continuous. It is obvious that f is gc-irresolute.

Theorem 3.6.5 Let X and Z be topological spaces and Y be a $T_{\frac{1}{2}}$ -space.

If $f: X \rightarrow Y$ is r-g-continuous and $g: Y \rightarrow Z$ is gc-irresolute, then $g \circ f: X \rightarrow Z$ is r-g-continuous.

Proof. Let F be any closed set in Z . Then F is g-closed in Z . Since g is gc-irresolute, $g^{-1}(F)$ is g-closed in Y . But Y is $T_{\frac{1}{2}}$ -space, so $g^{-1}(F)$ is closed in Y . Since f is r-g-continuous, we have $f^{-1}(g^{-1}(F))$ is r-g-closed in X . Hence $g \circ f$ is r-g-continuous.

Theorem 3.6.6 Let X and Z be topological spaces and Y be a T_{rg} -space.

If $f: X \rightarrow Y$ is gc-irresolute and $g: Y \rightarrow Z$ is r-g-continuous, then $g \circ f: X \rightarrow Z$ is r-g-continuous.

Proof. Let F be any closed set in Z . Since g is r-g-continuous, $g^{-1}(F)$ is r-g-closed in Y . But Y is T_{rg} -space, so $g^{-1}(F)$ is g-closed in Y . Since f is gc-irresolute, we have $f^{-1}(g^{-1}(F))$ is g-closed in X which implies that $f^{-1}(g^{-1}(F))$ is r-g-closed in X . Hence $g \circ f$ is r-g-continuous.