

## CHAPTER V

### PRESERVATION THEOREMS ON SOME TOPOLOGICAL SPACES

In this chapter, we define two new concepts of connected topological space called connected\* and connected\*\* spaces and study some properties of them and we investigate preservation theorems concerning of connected\* and connected\*\* spaces. Finally, we introduced concepts of g-Hausdorff and rg-Hausdorff spaces and we investigate preservation theorems concerning g-Hausdorff and rg-Hausdorff spaces.

#### 5.1 Preservation Theorems Concerning Connected\* and Connected\*\* Spaces

In this section, we defined connected\* and connected\*\* spaces and study some properties of them. Finally, we investigate theorem concerning of connected\* and connected\*\* spaces.

**Definition 5.1.1** A topological space  $X$  is said to be *connected\** if  $X$  cannot be written as a disjoint union of two nonempty g-open subsets of  $X$ .

**Theorem 5.1.2** Let  $(X, \mathfrak{T})$  be any topological space. Then the following statement are equivalent.

- (a)  $X$  is connected\*.
- (b)  $X$  is not a disjoint union of two nonempty g-closed subset of  $X$ .
- (c) The only subsets of  $X$  both g-open and g-closed are  $\emptyset$  and  $X$ .

(d) Let  $Y = \{0,1\}$  have the discrete topology. Then there is no g-continuous function from  $X$  onto  $Y$ .

*Proof.* (a)  $\Rightarrow$  (b). Suppose  $X = A \cup B$  where  $A$  and  $B$  are disjoint nonempty g-closed subsets of  $X$ . Then  $X - A = B$  and  $X - B = A$  are both the complements of g-closed sets, hence they are g-open. Thus  $X = A \cup B$  is also the expression of  $X$  as a union of two disjoint nonempty g-open subsets of  $X$ . Hence  $X$  is not connected\*.

(b)  $\Rightarrow$  (c). Suppose  $A$  is a subset of  $X$  with is both g-open and g-closed but that  $A$  is neither  $X$  nor  $\emptyset$ . Then  $X - A$  is also g-open and g-closed and nonempty. Thus  $X = (X - A) \cup A$  is the expression of  $X$  as the union of two disjoint nonempty g-closed subsets, which contradicts to (b).

(c)  $\Rightarrow$  (d). Suppose  $f: X \rightarrow Y$  is a g-continuous onto mapping. Then  $U = f^{-1}(\{0\})$  and  $V = f^{-1}(\{1\})$  are both nonempty. Thus  $U \neq \emptyset$  and  $U \neq X$ . Since  $\{0\}$  and  $\{1\}$  are open subsets of  $Y$  and  $f$  is g-continuous, we have  $U$  and  $V$  are g-open subsets of  $X$ . But  $U = V^c$ , so  $U$  is both g-open and g-closed sets, which contradicts to (c).

(d)  $\Rightarrow$  (a). Suppose  $X$  is not connected\*. Then  $X = U \cup V$  where  $U$  and  $V$  are nonempty disjoint g-open subsets of  $X$ . Define  $f: X \rightarrow Y$  by  $f(x) = 0$  if  $x \in U$  and  $f(x) = 1$  if  $x \in V$ . Then  $f^{-1}(\{0\}) = U$  and  $f^{-1}(\{1\}) = V$  hence  $f$  is g-continuous and onto which contradicts to (d).

**Remark 5.1.3** It is obvious that every connected\* space is connected. The next example shows that the converse is not true.

**Example 5.1.4** Let  $X = \{a, b, c\}$  and  $\mathfrak{I} = \{\emptyset, \{a\}, X\}$ . Then the topological space  $(X, \mathfrak{I})$  is connected. However, since  $\{c\}$  is both g-open and g-closed,  $(X, \mathfrak{I})$  is not connected\* by Theorem 5.1.2.

**Theorem 5.1.5** *If  $X$  is  $T_{\frac{1}{2}}$ -space, then  $X$  is connected\* if and only if  $X$  is connected.*

**Proof.** By Remark 5.1.3 we need only to show that if  $X$  is connected implies  $X$  is connected\*. Suppose that  $X$  is not connected\*. Then  $X = A \cup B$ , where  $A$  and  $B$  are nonempty disjoint g-closed subsets of  $X$ . Since  $X$  is a  $T_{\frac{1}{2}}$ -space,  $A$  and  $B$  also closed subsets of  $X$ , therefore  $X$  is not connected.

**Theorem 5.1.6** *If  $f: X \rightarrow Y$  is g-continuous and onto and  $X$  is connected\*, then  $Y$  is connected.*

**Proof.** Assume that  $f: X \rightarrow Y$  is g-continuous and onto and  $X$  is connected\*. Suppose  $Y$  is not connected. Let  $Y = U \cup V$ , where  $U$  and  $V$  are nonempty disjoint open subsets of  $Y$ . Then  $f^{-1}(U)$  and  $f^{-1}(V)$  are nonempty disjoint g-open subsets of  $X$  whose union is  $X$  because  $f$  is g-continuous and onto. Therefore  $X$  is not connected\* which contradicts to our assumption. Hence  $Y$  must be connected.

**Theorem 5.1.7** *If  $f: X \rightarrow Y$  is gc-irresolute and onto and  $X$  is connected\*, then  $Y$  is connected\*.*

**Proof.** Assume that  $f: X \rightarrow Y$  is gc-irresolute and onto and  $X$  is *connected\**. Suppose  $Y$  is not *connected\**. Then there is a nonempty proper subset  $A$  of  $Y$  such that  $A$  is both g-open and g-closed. Since  $f$  is gc-irresolute and onto, it follows that  $f^{-1}(A)$  is a nonempty proper subset of  $X$  which is both g-open and g-closed. Hence  $X$  is not *connected\** which is a contradiction. Therefore  $Y$  is *connected\**.

**Definition 5.1.8** A topological space  $X$  is said to be *connected\*\** if  $X$  cannot be written as a disjoint union of two nonempty r-g-open subsets of  $X$ .

**Theorem 5.1.9** Let  $(X, \mathfrak{J})$  be any topological space. Then the following statement are equivalent.

- (a)  $X$  is *connected\*\**.
- (b)  $X$  is not a disjoint union of two nonempty r-g-closed subset of  $X$ .
- (c) The only subset of  $X$  both r-g-open and r-g-closed are  $\emptyset$  and  $X$ .
- (d) Let  $Y = \{0,1\}$  have the discrete topology. Then there is no r-g-continuous function from  $X$  onto  $Y$ .

**Proof.** (a)  $\Rightarrow$  (b). Suppose  $X = A \cup B$  where  $A$  and  $B$  are disjoint nonempty r-g-closed subsets of  $X$ . Then  $X - A = B$  and  $X - B = A$  are both the complements of r-g-closed sets, hence they are r-g-open. Thus  $X = A \cup B$  is also the expression of  $X$  as a union of two disjoint nonempty r-g-open subsets of  $X$ . Hence  $X$  is not *connected\*\**.

(b)  $\Rightarrow$  (c). Suppose  $A$  is a subset of  $X$  with is both r-g-open and r-g-closed but that  $A$  is neither  $X$  nor  $\emptyset$ . Then  $X - A$  is also r-g-open and r-g-closed and nonempty. Thus  $X = (X - A) \cup A$  is the expression of  $X$  as a union of two disjoint nonempty r-g-closed subsets, which contradicts to (b).

(c)  $\Rightarrow$  (d). Suppose  $f: X \rightarrow Y$  is a r-g-continuous onto mapping. Then  $U = f^{-1}(\{0\})$  and  $V = f^{-1}(\{1\})$  are both nonempty. Thus  $U \neq \emptyset$  and  $U \neq X$ . Since  $\{0\}$  and  $\{1\}$  are open subsets of  $Y$  and  $f$  is r-g-continuous, we have  $U$  and  $V$  are r-g-open subsets of  $X$ . But  $U = V^c$ , so  $U$  is both r-g-open and r-g-closed sets, which contradicts to (c).

(d)  $\Rightarrow$  (a). Suppose  $X$  is not connected\*\*. Then  $X = U \cup V$  where  $U$  and  $V$  are nonempty disjoint r-g-open subsets of  $X$ . Define  $f: X \rightarrow Y$  by  $f(x) = 0$  if  $x \in U$  and  $f(x) = 1$  if  $x \in V$ . Then  $f^{-1}(\{0\}) = U$  and  $f^{-1}(\{1\}) = V$  hence  $f$  is r-g-continuous and onto which contradicts to (d).

**Remark 5.1.10** It is obvious that every connected\*\* space is connected\*. The next example shows that the converse is not true.

**Example 5.1.11** Let  $X = \{a, b, c\}$  and  $\mathfrak{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ . Then the topological space  $(X, \mathfrak{I})$  is connected\*. However, since  $\{c\}$  is both r-g-open and r-g-closed,  $(X, \mathfrak{I})$  is not connected\*\* by Theorem 5.1.9.

**Theorem 5.1.12** If  $X$  is  $T_{rg}$ -space, then  $X$  is connected \*\* if and only if  $X$  is connected\*.

**Proof.** By remark 5.1.10 we need only to show that if  $X$  is connected\* implies  $X$  is connected\*\*. Suppose that  $X$  is not connected\*\*. Then  $X = A \cup B$ , where  $A$  and  $B$  are nonempty disjoint r-g-closed subsets of  $X$ . Since  $X$  is a  $T_{rg}$ -space,  $A$  and  $B$  also g-closed subsets of  $X$ , therefore  $X$  is not connected\*.

**Theorem 5.1.13** If  $f: X \rightarrow Y$  is r-g-continuous and onto and  $X$  is connected\*\*, then  $Y$  is connected.

*Proof.* Assume that  $f : X \rightarrow Y$  is r-g-continuous and onto and  $X$  is connected\*\*. Suppose  $Y$  is not connected. Let  $Y = U \cup V$ , where  $U$  and  $V$  are nonempty disjoint open subsets of  $Y$ . Then  $f^{-1}(U)$  and  $f^{-1}(V)$  are nonempty disjoint r-g-open subsets of  $X$  whose union is  $X$  because  $f$  is r-g-continuous and onto. Therefore  $X$  is not connected\*\* which contradicts to our assumption. Hence  $Y$  must be connected.

**Theorem 5.1.14** *If  $f : X \rightarrow Y$  is r-g-irresolute and onto and  $X$  is connected\*\*, then  $Y$  is connected\*\*.*

*Proof.* Assume that  $f : X \rightarrow Y$  is r-g-irresolute and onto and  $X$  is connected\*\*. Suppose  $Y$  is not connected\*\*. Then there is a nonempty proper subset  $A$  of  $Y$  such that  $A$  is both r-g-open and r-g-closed. Since  $f$  is r-g-irresolute and onto, it follows that  $f^{-1}(A)$  is a nonempty proper subset of  $X$  which both r-g-open and r-g-closed. Hence  $X$  is not connected\*\* which a contradiction. Therefore  $Y$  is connected\*\*.

## 5.2 Preservation Theorems Concerning g-Hausdorff and rg-Hausdorff Spaces

In this section, we define new concepts of Hausdorff spaces called g-Hausdorff and rg-Hausdorff spaces and investigate preservation theorems concerning g-Hausdorff and rg-Hausdorff spaces.

**Definition 5.2.1** A space  $X$  is said to be *g-Hausdorff* if whenever  $x$  and  $y$  are distinct points of  $X$ , there are disjoint g-open sets  $U$  and  $V$  in  $X$  with  $x \in U$  and  $y \in V$ .

It is obvious that every Hausdorff space is g-Hausdorff space. The following example shows that the converse is not true.

**Example 5.2.2** Let  $X = \{a, b, c\}$  and  $\mathfrak{I} = \{\emptyset, \{a\}, X\}$ . It clear that  $X$  is not Hausdorff. Since  $\{a\}$ ,  $\{b\}$  and  $\{c\}$  are all g-open, it follow that  $(X, \mathfrak{I})$  is g-Hausdorff.

**Theorem 5.2.3** *Let  $X$  be a topological space and  $Y$  be Hausdorff. If  $f : X \rightarrow Y$  is injective and g-continuous, then  $X$  is g-Hausdorff.*

**Proof.** Let  $x$  and  $y$  be any two distinct points of  $X$ . Then  $f(x)$  and  $f(y)$  are distinct points of  $Y$  because  $f$  injective. Since  $Y$  is Hausdorff, there are disjoint open sets  $U, V$  in  $Y$  containing  $f(x)$  and  $f(y)$  respectively. Since  $f$  is g-continuous and  $U \cap V = \emptyset$ , we have  $f^{-1}(U)$  and  $f^{-1}(V)$  are disjoint g-open sets in  $X$  such that  $x \in f^{-1}(U)$  and  $y \in f^{-1}(V)$ . Hence  $X$  is a g-Hausdorff.

**Theorem 5.2.4** *Let  $X$  be a topological space and  $Y$  be g-Hausdorff. If  $f : X \rightarrow Y$  is injective and gc-irresolute, then  $X$  is g-Hausdorff.*

**Proof.** Let  $x$  and  $y$  be any two distinct points of  $X$ . Then  $f(x)$  and  $f(y)$  are distinct points of  $Y$  because  $f$  injective. Since  $Y$  is g-Hausdorff, there are disjoint g-open sets  $U, V$  in  $Y$  containing  $f(x)$  and  $f(y)$  respectively. Since  $f$  is gc-irresolute and  $U \cap V = \emptyset$ , we have  $f^{-1}(U)$  and  $f^{-1}(V)$  are disjoint g-open sets in  $X$  such that  $x \in f^{-1}(U)$  and  $y \in f^{-1}(V)$ . Hence  $X$  is a g-Hausdorff.

**Definition 5.2.5** A space  $X$  is said to be *rg-Hausdorff* iff whenever  $x$  and  $y$  are distinct points of  $X$ , there are disjoint r-g-open sets  $U$  and  $V$  in  $X$  with  $x \in U$  and  $y \in V$ .

It is obvious that every g-Hausdorff space is rg-Hausdorff space. The following example shows that the converse is not true.

**Example 5.2.6** Let  $X = \{a, b, c\}$  and  $\mathfrak{I} = \{\emptyset, \{a\}, \{a, b\}, X\}$ . Since  $\{a\}, \{b\}$  and  $\{c\}$  are all r-g-open sets, it implies that  $(X, \mathfrak{I})$  is rg-Hausdorff. Since  $\{c\}$  and  $\{b, c\}$  are not g-open in  $X$ , it follows that  $a$  and  $c$  cannot be separated by any two g-open sets in  $X$ . Hence  $(X, \mathfrak{I})$  is not g-Hausdorff.

**Theorem 5.2.7** *Let  $X$  be a topological space and  $Y$  be Hausdorff. If  $f : X \rightarrow Y$  is injective and r-g-continuous, then  $X$  is rg-Hausdorff.*

**Proof.** Let  $x$  and  $y$  be any two distinct points of  $X$ . Then  $f(x)$  and  $f(y)$  are distinct points of  $Y$  because  $f$  injective. Since  $Y$  is Hausdorff, there are disjoint open sets  $U, V$  in  $Y$  containing  $f(x)$  and  $f(y)$  respectively. Since  $f$  is r-g-continuous and  $U \cap V = \emptyset$ , we have  $f^{-1}(U)$  and  $f^{-1}(V)$  are disjoint r-g-open sets in  $X$  such that  $x \in f^{-1}(U)$  and  $y \in f^{-1}(V)$ . Hence  $X$  is a rg-Hausdorff.

**Theorem 5.2.8** *Let  $X$  be a topological space and  $Y$  be rg-Hausdorff. If  $f : X \rightarrow Y$  is injective and r-g-irresolute, then  $X$  is rg-Hausdorff.*

**Proof.** Let  $x$  and  $y$  be any two distinct points of  $X$ . Then  $f(x)$  and  $f(y)$  are distinct points of  $Y$  because  $f$  injective. Since  $Y$  is rg-Hausdorff, there are disjoint r-g-open sets  $U, V$  in  $Y$  containing  $f(x)$  and  $f(y)$  respectively. Since  $f$  is r-g-irresolute and  $U \cap V = \emptyset$ , we have  $f^{-1}(U)$  and  $f^{-1}(V)$  are disjoint r-g-open sets in  $X$  such that  $x \in f^{-1}(U)$  and  $y \in f^{-1}(V)$ . Hence  $X$  is a rg-Hausdorff.