CHAPTER 11

PRELIMIN ARIES

We begin with some basic knowledge of module theory as well as some
elementary results.
Throughout the thesis, all rings are associative with identity and all right

modules are unital.

1. Essential and co-essential submodules.

We now consider some special classes of submodules in a module M.

2.1.1 Definition. Let M be a right R-module. A submodule N of M
1s called essential or large in M if it has non-zero intersection with any non-zero

submodule of M. If N is essential in M we will write N ¢ M.

Dually, a submodule N is called co-essential or small in M if for any sub-
module X of M such that N+X = M, then X = M. For a co-essential submodule
N of M we will write N C° M.

2.1.2 Proposition. A submodule I of M s essential in M if and only if
for any 0 # m € M there ezists enr € R such that 0 £ mr € K.

Proof.(==) For any 0 # m € M, we have 0 # mR C M. Since K is
essential in M, we get X N mR # 0. Hence there exists a 0 #% 2z € K NmR, ie.,
0# 2z =mr € K for some r € R.



(<=) Let N be any non-zero submodule of M. Take any 0 # z € N. Then
KnzR #0, since 0 # zr € K for some r € R by assumption. Hence K NN #£ 0
and therefore K is essential in M. O

2.1.3 Proposition. Let M be ¢ right R-module. A submodule K of M s
essential in M if and only if for any non-zero element z € M, there is an essential

right ideal L of R such thaet 0 £ L C K.

Proof.(=>) Let K be an essential submodule of M. Take x € K. Let
L ={r € R|zr € K}. Then by Proposition 2.1.2, L # 0. We claim that
L is essential in R. For an element y € LR, we can write y = X7, [;r;, where

l;€eL,rie R, 1<1<nforsomenechN.

Consider zy = z(Z%,lir;) = B z(lir;) = B z(l;)r;. Since zl; € K,
we have (zl;)r; € K for all 1= 1, 2, 3,..., n. Thus zy € K, hence y € L. This
shows that LR C L, i.e., L is a right ideal of R. Since for any a € eL, we have
a=-cL ¢ K. It follows that 2L C K. Since K C® M, then there exists anr € R
such that 0 # zr € K, by Proposition 2.1.2. It follows that zL # 0. Let P be a
non-zero right ideal of R. We want to show that PN L # 0. In fact, if zP =0,
then P C L. Hence PNL =P # 0. f P # 0, then 2P N K # 0. It means
that there exists an element r € R such that 0 # zr € K. Hence 0 £ r € PN L,
showing that L C* R.

(<==) Let N be a non-zero submodule of M. Take any 0 # n € N. By
assumption, 0 # nL C K for some essential right ideal L of R. Hence 0 # nL C
NN K. It follows that K is essential in M. 4

2.1.4 Definition. A submodule N of M is called closed in M if it has no

essential extensions but itself. In other words, a submodule N of M is closed in



M if for any submodule X of M containing N such that N is essential in X we
must have X = N. We see that every direct summand of M is closed in M.

Let M be a right R-module and N its submodule. A submodule K of M is
called a complement of N in M if K is maximal among submodules @ of M such
that QNN = 0. By Zorn’s Lemma, every submodule of any module M has at least
a complement in M. We define that a submodule K of M is called a complement
in M if there is a submodule N of M such that K is a complement of N in M.

2.1.5 Proposition. Let K C L be submodules of M such that K 1s a

complement in L and L 1s a complement in M. Then K is a complement in M.
Proof. See [13, Lermma 1.2]. O

2.1.6 Proposition. Let N,L be submodules of M such that N N L=0.
Then:

(1) There is a complement K of N in M such thet L C K;

(2) K @ N is essential in M;

(8) K s closed in M.

Proof. See |3, 1.10]. : O

2.1.7 Proposition. Let K be a submodule of M and L a complement of K
in M. Then K is closed if and only if K is a complement of L in M. Especially,

a submodule K of M 1is closed if and only if K is a complement in M.
Proof. See {3, 1.10]. O

2.1.8 Proposition. Let K,L,N be submodules of M such that K C L.
Then:



(1) There is a closed submodule H of M such that N is essential in H.
(2) If L is closed in M, then L/K 1is closed in M/K.
Proof. See [3, 1.10]. 0

2.1.9 Proposition. Let K be a complement in M. Then K is o direct
summand of M if and only if there is a complement L of K in M such that every
homomorphism ¢ : K @ L — M can be lifted to a homomorphism 6 : M — M.

Proof. One direction is clear. Assume that there is a complement L of K in
M which satisfies the above property. Let o : K@®L — M defined by p(z+y) =z
(z € K,y € L). By hypothsis, there exists a homomorphism 6 : M — M such
that 8(z +v) = (2 € K,y € L). Clearly, K CImé and L C Keré.

Let 0 £ v € Imd, then there exists u € M such that v = 6(u),u £ L.
Therefore K (L + wR) # 0. Hence there exist z € K, y € L and r € R such
that 0 # z = y + ur, then « = 6(z) = 6(y + ur) = vr. It follows that vRN K 0
for every v # 0,v € Imf. This implies that K is essential in Imf. Because K is
a complement in M, hence K = Imf. It is easy to verify that M = K @ Kerf.
Hence K is a direct summand of M. O

2. Socles and radicals of modules

2.2.1 Definition. Let M be a right R-module. The socle of M, denoted
by Soc(M ), is the sum of all simple submodules of M. It was shown that the socle
of M is the intersection of all essential submodules of M. Dually, the radical of
M denote by rad(M) is the intersection of all maximal submodules of M. This is
the surn of all small submodules of M (see [1]).



2.2.2 Proposition. If (My)acas is o family of submodules of M with
M =, M., then Soc(M )= 4 Soc(M,) and Rad(M )=@ , Red(M, ).

Proof. By [1, Proposition 9.19]. O

2.2.3 Lemma. If S is the socle of a direct sum P e g Na, then S=@ ., Soc(Ny).

Hence

(@ N,/ S = @(NQ/SOC(NQ)).

acK acK

Proof. See |7, Folgerung 9.1.5]. O3

2.2.4 Lemma. Let M be a module and S=Soc(M), then:
(1) If A and B are submodules of M with AN B =0, then

((A+8)/5)n((B+5)/5)=0;

(2) If A 15 a direct summand of M, then (A+S5)/S is o direct summand of M/S;
(3) If @;cr Ai is a direct sum of submodules of M, then P, ((A; + S)/S) is

also o direct sum of submodules in M/S.

Proof. This proof is given by Nguyen Viet Dung [12] and we present it
here for the sake of completeness.

Let f: M — M/S be the canonical map.

(1) Suppose that A and B are submodules of M with AN B = 0. Set
V = f(A)N f(B). There exists a submodule V of A such that f(V) = V. Clearly
VEB+S=B®T for some submodule T of S. Since VN B = 0, it follows that
V is isomorphic to a submodule of T. Hence V € S which implies that V = 0.
Therefore we have f(A) N f(B) =0.



(2) Let A be a direct summand of M. Then M = A® B for some submodule
B of M. Clearly M/S = f(A) + f(B). By (1) we have f(A) N f(B) = 0. Thus
f(4) is a direct summand of M/S.

(3) This is an immediate consequence of (1). O

3. Semisimple modules
2.3.1 Definition. A right R-module M is semisimple if and only if Soc(M )==M.

2.3.2 Proposition. For o right R-module the following statements are
equivalent:

(a) M is semisimple;

(b) M is the sum of simple submodules;

(c) M is the direct sum of its simple submodules;

(d) Every submodule of M is a direct summand;

(e) Every short ezact sequence
0— K —M-—N-—10
of right R-modules splits.

Proof. From [1, Theorem 9.6]. 0

4. Finitely generated and finitely cogenerated modules

A module M is said to be finitely generated if it is generated by a fi-

nite number of its elements, i.e., there exist elements my,...,mp of M such that



M=X"_,m;R for some positive integer n. The following property of finitely gen-

erated module is useful :

2.4.1 Lemma. A right R-module M is finitely generated if and only if
for any family submodules {M;, 1 € I} such that M=%, ; M;, then there ezits o
finite subset I, of I such that M=), M;.

Proof. Since M = 3, . =R, then one direction is clear. Let M be a
finitely generated module with spanning set {z1,22,..,%a}. Then each =z;, (1 <
i < n) is contained in a finite sum >, o7 M;j. Put L, =, <sen Li, we get the

result. L

The above property of finitely generated module leads to the following
definition that we say here for the duality.

2.4.2 Definition. A module M is called finitely cogeneraied if for any
family {M;,7 € I} of submodules of M such that (;c; M; =0, there exists a finite
subset I, of I such that ();c, M; =0.

2.4.3 Definition. A submodule A of a module M is called a direct sum-
mand of M if there exists a submodule B of M such that A+ B = M and ANB=0.
We will write M = AQ B.

2.4.4 Definition. Let M be a right R-module. A family {X;}ics of sub-
modules of M is called independent if for every j € I we have X;N EiEI\{j} X;=0.
M is a direct sum of the family {X;}ier of submodules of M if M = Eier X;
and the family {X;}icr is independent. In case M is a direct sum of the family
{X;}ier of submodules of M, we say that €D;c; X; is a decomposition of M into

direct summands.




2.4.5 Lemma. Any direct summand of ¢ finitely generated modules is again
finitely generated. Especially, if M s finitely generated, then any decomposition

of M into direct summands is finite.

Proof. It follows from Lemma 2.4.1. ]

5. Noetherian and A rtinian modules

An ascending chains of submodules of a module M is a family {A4; |7 € IN}

of submodules such that
A C A C...C An C An+1 C ..

An ascending chain {4; | ¢ € IN} of submodules of M is said to be station-
ary if there is an ng € IV such that A, = Anp4; for all n > ng.
Similarly, a descending chains of submodules of a module M is a family

{A; |7 € IN} of submodules such that
Al DA DA D . .D A DA 1 D

The descending chain {A; |7 € IN} of submodules of M is called stationary

if there is an ng € N such that A, = A4 for all n > nyg.

2.5.1 Definition. A right R-module M is called Noetherian if any ascend-
ing chain of submodules of M is stationary. A ring R is called right Noetherian if
it is noetherian as a right R-module. Dually, a module Mg is called Artinian if
every descending chain of submodules is stationary. A ring R is right Arfinian if

Rp is Artinian.
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2.5.2 Proposition. For a module M the following statements are equive-

(a) M s Noetherian;
(b) Every submodule of M 1s finitely generated;

(¢) Every non-empty set of submodules of M has a mazimal element.
Proof. See [1, Proposition 10.9]. O
2.5.3 Proposition. For a module M the following statements are equiva-
(a) M is Artinian;

(b) Every factormodule of M 1is finitely cogenerated;

(c) Every non-empty set of submodules of M has a minimal element.
Proof. See [1, Proposition 10.10j. a

Let C be a class of submodules of M. We say that M satisfies acc (resp. dcc)

on C if every ascending (descending) chain of elements of C (ordered by inclusion)

is stationary. The following proposition gives us an image.

2.5.4 Proposition. Let M be ¢ non-zero module that satisfies acc or dec

on direct summands. Then M 1is the direct sum

M=M1®..-@Mn,

for a finite set of indecomposable submodules.

Proof. See [1, Proposition 10.14]. O

2.5.5 Proposition. For a semisimple module M the following statements

are equivalent:
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(a) M is Artinian;

(b) M is Noetherian;

(c) M is finitely generated;
(d) M 1s finitely cogenerated.

Proof. See [1, Corollary 10.16]. ‘ O

2.5.6 Lemma. If M satisfies acc (resp. dec) on direct summands, then

every direct summand of M also has acc (resp. dcc) on direct summands.

Proof. Let K be a direct summand of M and {N; | ¢t € IV} be an ascending
(descending) chain of direct summands in K. Then {N; | ¢ € IV} is the ascending

(descending) chain of direct summands in M and the lemma follows. L

6. UC-modules

Recall that a submodule K of M is closed (in M) provided K has no proper
essential extension in M. We will denote such a module K of M by K Co M.

By Zorn’s Lemma, every submodule N of M is essential in a closed sub-
module K of M. We call K a closure of N in M. It is clear that a submodule N

of M may have many closures in M. From this it leads to the following definition.

2.6.1 Definition. Let M be a right R-module. A module M is called

UC-modules if every submodule has a unique closure.

2.6.2 Proposition. The following statments are equivalent for a module

(1) M 1s ¢ UC-module;

12



(2)IfKCc M, NCM then KNN C¢ N;
() IfFKCcM,LCcMthen KNL Cc M;
(4) M/K is a UC-module for any K Cc M.

Proof. See [14, Lemma 6]. O

7. Injective and projective modules

It i1s well-known that the following conditions are equivalent for a map

f:A — B, where A, B are sets.
(1) f is an injective map, i.e., f is 1-1;
(2) for any set C and map h,g:C — A, we have fh = fg implies h = g¢;
(3) there exists f' : B — A such that f'f = 14.

When we equip a structure for A and B, one can ask the question that
"When are the above conditions still equivalent 77, for example, when A, B are
abelian groups and f is a group homomorphism. Clearly (1) < (2) and (3) = (1),
but the converse (1) = (3) is not true. An abelian group A such that (1) = (3)
is true for all abelian group B is called a divisible group. An abelian group A is
divisible if Az = A for all 0 # z € Z. Now we consider the same properties for
right R-modules A, B and R-homomorphism f : A — B. This leads to the notion
of injective modules as follows.

2.7.1 Definiton. Let M be a right R-module. A module N is said to be M-
injectsve if for any monomorphism f : X — M and homomorphism ¢ : X — N

there exists a homomorphism ¢ : M — N such that ¢ = @f.
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A module N is called an injective module if 1t 1s R - injective. It is well-
known that a module N is injective(=R-injective) if it is M-injective for every

module M of Mod-R (Baer’s Criteria).

A module M is called self-injective or quasi-injective if it is M-injective.
We note that a submodule N of a module A is called an invariant submodule of
M if f(N) C N for any endomorphism f : M — M. Any invariant submodule

of a quasi-injective module is again quasi-injective (see [10]).

2.7.2 Proposition. Let M = M; @ M, then the following conditions are

equivalent:
(1) My 1s My-injective;

(2) For every submodule N of M which satisfies N N My =0, there exists a
submodule M' of M such that M = M' & My and N C M'.

Proof. See [3, Lemma 7.5]. .

Similarly to the above definition of injective, we see that for a map f: 4 —
B where A, B are sets, the following conditions are equivalent:

(1) f is surjective {onto);

(2) for any set C and map h,g: B — C, we have hf = gf implies h = g;

(3) there exists a map f': B — A such that ff' =1p.

It is also clear that (3) = (1) < (2) in case that A, B are right R-module
and f is an R-homomorphism. The question is that "what is the property of B

such that (1) = (3) 7. The structure of projective modules answers this question.
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2.7.3 Definition. Let M be a right R-module. A module N is said to
be M-projective if for any epimorphism ¢ : M — X and any homomorphism

¥ : N — X, there exists a homomorphism % : N — M such that ¥ = g3.

If M is M-projective, we will say that M is quasi-projective. Unlike injec-
tivity, if N is R-projective, it needs not to be M-projective for all M in Mod-R.
Therefore we define that a module P is called a projective module if it is M-
projective for any M in Mod-R. For a givenn module M, o[M] is denoted for the
full subcategory of Mod-R whose object are submodules of M-generated modules.
A module M is said to be projective in ¢[M] if it is X -projective for any X € o[M].
If M is projective in o[M], then it is quasi-projective. Conversely, if M is finitely

generated and quasi-projective, then it is projective in o[M] (see [3]).

It is interesting to see that if a module P is quasi-projective and K is an

invariant submodule of P, then P/K is also quasi-projective.
8. CS-modules, quasi-continuous and continuous modules

Let M be a right R-module. It is well-knowm that there exists an injective
right R-module, denoted by E(M), such that there is a monomorphism ¢ : M —
E(M) with £{(M) Cc® E(M). Such a module is called the injective hull of M in
Mod-R. The existence of M-injective hull of N € o[M] shows that there exist
quasi-injective modules in Mod-R. It is interesting to see that for a quasi-injective
module, the following conditions are satisfied:

(C1) Every submodule of M is essential in a direct summand of M;

(Cy) Every submodule of M which is isomorphic to a direct summand of

15




M is again a direct summand of M;
(Cy) I M, and M, are direct summands of M such that M; N M= 0,
then M, @ M, is a direct summand of M.

A module M is called continuous if it satisfies the conditions (C;) and
(Cy). Tt is called quasi-continuous if it satisfies (C) and (C3); and CS-module if
it satisfies (C4) only.

From the above definitions, we infer the implications:

injective => quasi-injective = continuous = quasi-continuous = CS.
It is well-known that every direct summand of a quasi-injective module is
again quasi-injective. Here, the condition Ci(z = 1,2,3) is also inherited to any

direct summand and we have the following proposition.

2.8.1 Proposition. The conditions (C;) ¢ = 1, 2, 8, are closed under
direct summands. In other words:
Every direct summand of a CS-module is again CS;
Every direct summand of a quasi-continuous module 1s again gquasi- contin-
- uous;

Every direct summand of a continuous module is again continuous.
Proof. See [8, Prop. 2.7]. I

2.8.2 Proposition. Module M satisfies(Cs ) if and only if for every direct
sum K = 1 & Ky of direct summands Ky and Ky of M, every homomorphism
@: K — M can be lifted to o homomorphism 0 : M — M.

Proof. See [15, Lemma 3.3.2]. O
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9. CESS-modules

2.9.1 Definition. A module M is called a CESS-module if every comple-
ment with essential socle is a direct summand, equivalently, every submodule with
essential socle is essential in a direct summand of M, or again every closure of
every semisimple submodule is a direct summand of M.

By [2], CS-modules are CESS-modulus. Modules with zero socle are CESS.

From [2], we can find some examples which shows that CESS-module needs not

to be CS.

10. Annihilators and singular modules

Let M be a right R-module. For an element m € M, we denote rg(m) =
{r € R | mr = 0}, the right annihilator of m, and rg(M) = {r € R| mr = 0 for
all m € M}, the right annihilator of M.

Let I be a two-sided ideal of R. Then R/ is a ring with identity. Clearly,
if M is a right R-module, where R = R/I, then M can be considered as a right
R-module. The converse requires the condition that I C rgr(M), ie., if M is a
right R-module and I is a two-sided ideal of R such that I C rg(M), then M can
be considered as a right R-module, where R = R/I.

Let M be a right R-module. Consider the set of all elements z € M such
that rg(z) is essential in R. We denote this set by Zr(M). This is a submodule
of M and we called it the singular submodule of M. When Zr(M) = M, we will

17



say that M is a singular module. M is called a non-singular module if Zgr(M) =

0. The following properties are given in [5] :

2.10.1 Proposition. Let A, B,C be submodules of a non-singular module
M. Suppose that A is o submodule of BNC and C 1s o direct summand of M. If A
15 essential in C' and essenttal in B, then B must be contained in C and therefore

B 13 essential in C.
Proof. See [10, p. 693]. O

Modifying the properties of singular modules, Wisbauer transfered this no-
tion to the category o[M], for a given right R-module M. Let M and N be right
R-module. N is called singular in o[M] or M-singular if there exists a module L
in o[M] containing an essential submodule K such that N & L/K (seec [3]). By
definition, every M-singular module belongs to ¢[M]. For M = Rp the notion R-

singular is identical to the usual definition of singular right R-module.

The class of all M-singular modules is closed under submodules, homomor-
phic images and direct sums (see [3}). Hence every module N € o[M] contains
a largest submodule which we denote by Zp(N). The following properties of

M-singular modules are well-known :
2.10.2 Proposition. Let M be an R-module.
(1) A simple R-module E 13 M-singular or M -projective.
(2) If Soc(M ) = 0, then every simple module in o[M] is M-singular.

Proof. See [3, Proposition 4.2]. O
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