

REFERENCES

1. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine (second edition). Clarendon press, Oxford. 1989.
2. Dennis VP and Sapota A. Chemical toxicity and reactive oxygen species. International Journal of Occupational and Medicine and Environmental Health 1996; 9:331-340.
3. Davies KJA. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp; Portland press, London. 1995; 61:1-31.
4. Gille G and Sigler K. Oxidative stress and living cells. Folia Microbio 1995; 40:131-152.
5. Hancock JT. Superoxide, hydrogen peroxide and nitric oxide as signaling molecules: their production and role in disease. British Journal of Biochemical Science 1997; 54:38-46.
6. Maser E. Stress, hormonal changes, alcohol, food constituents and drugs: factors that advance the incidence of tobacco smoke-related cancer. TiPS 1997; 18:270-275.
7. Editorial. Free radicals, oxidative damage and degenerative diseases. European Journal of Cancer Prevention 1996; 5:307-312.
8. Poli G and Parola M. Oxidative damage and fibrogenesis. Free Radical Biology and Medicine 1997; 22:287-305.
9. Jacob RA. and Burri BJ. Oxidative damage and defense. Am. J. Clin. Nutr 1996; 63:985S-990S.
10. Whitehead P.T, Robinson D, Allaway S and et al. Effect of red wine ingestion on the antioxidant capacity of serum. Clin Chem; Endocrinology and Metabolism 1995; 41:32-35.
11. Jang M, Cai L, Udeani GO and et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997; 275:218-220.

12. Zhang A, Zhu QY, Luk YS and et al. Inhibitory effects of jasmine green tea epicatechin isomers on free radical-induced lysis of red blood cells. *Life sciences* 1997; 4:383-394.
13. Sutthajit and et al. Study of antioxidant of Thai medicinal herbs and vegetables plants for health promotion of HIV+ and aids patients; Progression report submitted the Office of Permanent Secretary Bureau of University Affair.1997.
14. Tsuda T, Mokino Y, Kato H and et al. Screening for antioxidative activity of edible pluses. *Biosci Biotech Biochem* 1993; 57:1606-1608.
15. Halliwell B, Gutteridge JMC. *Free radicals in biology and medicine*. Clarendon press, Oxford. 1989; 22-81.
16. Sohal RS, Svesson I, Brunk UT. Hydrogen peroxide production by liver mitochondria in different species. *Mech Aging Develop* 1990; 53:209-215.
17. Ekstrom G, Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P4502E1). *Biochem Pharmacol* 1989; 38:1313-1319.
18. Minotti G, Aust SD. The role of iron in oxygen-radical mediated lipid peroxidation. *Chem Biol Interact* 1989; 71:1-19.
19. Biomond P, Swaak AJG, Penders JMA, and et al. Superoxide production by polymorphonuclear leukocytes in rheumatoid arthritis and osteoarthritis: *in vivo* inhibition by the anti-rheumatic drug, piroxicam, due to interference with the activation of the NADPH-oxidase. *Ann Rheu Dis* 1986; 45:249-255.
20. Powis G, Svingen BA, Appel P. Quinone-stimulated superoxide formation by subcellular fractions, isolated hepatocytes, and other cells. *Mol Pharmacol* 1981; 20:387-394.
21. Eling TE, Krauss RS. Arachidonic acid-dependent metabolism of chemical carcinogens and toxicants. In: *Arachidonic Acid Metabolism Tumur Initiation*, ed. Martinett L. Martinus Nijhoff Publishing, Boston.1985.

22. Miller JW, Selhub J and Joseph JA. Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of *o*-methylation and melatonin. *Free Radical Biology and Medicine* 1996; 21:241-249.
23. Hunt JV, Dean RT and Wolff SP. Hydroxyl radical production and autoxidative glycosylation. *Biochem J* 1988; 256:205-212.
24. Maxwell SRJ and Lip GYH. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. *International Journal of Cardiology* 1997; 58:95-117.
25. Liu D. The roles of free radicals in amyotrophic lateral sclerosis. *Journal of Molecular Neuroscience* 1996; 7:159-167.
26. Ansari NH, Wang L, Erwin AA and Church DF. Glucose-dependent formation of free radical species in lens homogenate. *Biochemical and Molecular Medicine* 1996; 59:68-71.
27. Dobmayer TS and et al. Ex vivo induction of apoptosis in lymphocytes is mediated by oxidative stress: role for lymphocyte loss in HIV infection. *Free radical Biology and Medicine* 1997; 22:775-785.
28. Filef JG, Laiierre C, Lachance S and Chan JSD. Nitric oxide co-operates with hydrogen peroxide in including DNA fragmentation and cell lysis in murine lymphoma cells. *Biochem J* 1997; 321:897-901.
29. Mazzetti I, Grigolo B, Borzi RM, and et al. Serum copper/zinc superoxide dismutase levels in patients with rheumatoid arthritis. *Int J Clin Lab Res* 1996; 26:245-249.
30. Miesel R, Hartung R and Kroeger H. Priming of NADPH oxidase by tumor necrosis factor alpha in patients with inflammatory and autoimmune rheumatic diseases. *Inflammation* 1996; 20:427-435.
31. Blanc EM, Toborek M, Mark RJ and et al. Amyloid β -peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells. *J Neurochem* 1997; 68:1870-1881.

32. Lai CT and Yu PH. Dopamin- and L- β -3,4-dihydroxyphenylalanine hydrochloride (L-dopa)-induced cytotoxicity towards catecholaminegenic neuroblastoma SH-SY5Y cells. *Biochemical Pharmacology* 1997; 53:363-372.

33. Punchard NA and Kelly FJ, editors. *Free radicals: a practical approach*. Oxford university press, New York. 1996.

34. Jones DP, Coates RJ, Flagg EW and et al. Glutathione in food listed in the National Cancer Institute's Health Habit and History Food Frequency Questionnaire. *Nutr Cancer* 1992; 17:57-75.

35. Fridovich I. Superoxide radical and superoxide dismutases. *Annu Rev Biochem* 1995; 64:97-112.

36. Ham AJL and Liebler DC. Vitamin E oxidation in rat liver mitochondria. *Biochemistry* 1995; 34:5754-5761.

37. Jessup W and et al. α -Tocopherol consumption during low-density-lipoprotein oxidation. *Biochem J* 1990; 265:399-405.

38. Ames BN, Cathcart R, Schwiers E and Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. *Proc Natl Acad Sci USA* 1981; 78:6858-6862.

39. Sies H and Stahl W. Vitamins E and C, β -carotene, and other carotenoids as antioxidants. *Am J Clin Nutr* 1995; 62:1315S-1321S.

40. Boik J. *Cancer and Natural medicine*. Oregon Medical press, USA. 1996: 148-160.

41. Harbone JB and Baxter H, editors. *Phytochemical dictionary: A handbook of bioactive compounds from plants*. Bristol, Taylor and Frances, Inc. 1991.

42. Leibovitz BE. Polyphenols and bioflavonoids the medicines of tomorrow, Pts 1 and 2. *Townsend letters for doctors*, April-May 1994.

43. Osawa T, Ide A, Su JD and Namiki M. Inhibition of lipid peroxidation by ellagic acid. *J Agric Food Chem* 1987; 35:808-812.

44. Mira L, Silva M and Manso CF. Scavenging of reactive oxygen species by silibinin dihemisuccinate. *Biochemical Pharmacology* 1994; 48:753-759.

45. Tmura A, Sato T. and Fujii T. Antioxidant activity of indapamide and its metabolite. *Chem Pharm Bull* 1990; 38:255-257.
46. Laughton ML, Evans PJ, Moroney MA and et al. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: Relationship to antioxidant activity and to iron ion-reducing ability. *Biochemical Pharmacology* 1991; 42:1673-1681.
47. Whalley CV, Rankin SM, Hoult JRS and et al. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. *Biochemical Pharmacology* 1990; 39:1743-1750.
48. Toering SJ, Gentile GJ and Gentile JM. Mechanism of antimutagenic action of (+)-catechin against the plant-activated aromatic amine 4-nitro-o-phenylenediamine. *Mutation Research* 1996;361:81-87.
49. Duthie SJ, Collins AR, Duthie GG and Dobson VL. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. *Mutation Research* 1997; 393:223-231.
50. Morel I, Lescoat G, Cogrel P and et al. Antioxidant and iron-chelating activity of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. *Biochemical Pharmacology* 1993; 45:13-19.
51. Rice-Evans CA, Miller NJ, Bolwell PG and et al. The relative antioxidant activities of plant-derived polyphenolic flavonoids. *Free Rad Res* 1994; 22:375-383.
52. Sreejayan and Rao MNA. Curcuminoids as potent inhibitors of lipid peroxidation. *J Pharm Pharmacol* 1994; 46:1013-1016.
53. Sharma OP. Antioxidant activity of curcumin and related compounds. *Biochemical Pharmacology* 1976; 25:1811-1812.
54. Cuvelier ME, Richard H and Berset C. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. *Biosci Biotech Biochem* 1992; 56:324-325.
55. Kilham C. OPC: The miracle of antioxidant. Kates Publishing, Inc. New Canaan, Connecticut. 1997.

56. White A, Handler P and Smith EL, editors. *Principles of biochemistry*, 5th ed. McGraw-Hill Publishing, 1973.

57. Tsunoda Y. Receptor operated Ca^{2+} signaling and crosstalk in stimulus coupling. *Biochim Biophys Acta* 1993; 1154:105-156.

58. Chiesi M and Carafoli E. The homeostasis of calcium in smooth muscle cell. In: *Handbook of Hypertension 7. Pathophysiology of Hypertension, Cardiovascular Aspects*. A. Zanchetti and R.C. Tarazi, eds. Elsevier Science Publ., B.V.:357.

59. Bachs O, Agell N and Carafoli E. Calcium and calmodulin function in the cell nucleus. *Biochim Biophys Acta* 1992; 1113:259-270.

60. Pierce SK and Politis AD. Ca^{2+} -activated cell volume recovery mechanisms. *Ann Rev Physiol* 1990; 52:27-42.

61. Heizmann CW and Hunziker W. Intracellular calcium binding proteins: More sites than in sights. *TIBS* 1991; 16:98-103.

62. Sarkadi B. Active calcium transport in human red cells. *Biochim Biophys Acta* 1980; 604:159-190.

63. Lorand L, Bjerrum OJ, Hawkins M and et al. Degradation of transmembrane proteins in Ca^{2+} -enriched human erythrocytes. *J Biol Chem* 1983; 258:5300-5305.

64. Whatmore JT, Tang EKY and Hickman JA. Cytoskeletal proteolysis during calcium-induced morphological transitions of human erythrocytes. *Exp Cell Res* 1992; 200:316-325.

65. Carafoli E. The role of calcium in the control of cell function. In: *Integration of mitochondria function*. Lemasters JJ, Hackenbrock CR, Thurman RG and Westerhoff HV, eds. Plenum Publ. Corp. 1988.

66. Verecka L, Carafoli E. Vanadate-induced movement of Ca^{2+} and K^+ in human red blood cells. *J Biol Chem* 1982; 257:7414-7421.

67. Carafoli E. The Ca^{2+} pump of the plasma membrane. *J Biol Chem* 1992; 267:2115-2118.

68. Shatzman HJ. The calcium pump of the surface membrane and of the sarcoplasmic reticulum. *Ann Rev Physiol* 1989; 51:473-485.

69. Luterbacher S and Shatzman HJ. The site of action of La^{2+} in the reaction cycle of the human red cell membrane Ca^{2+} -pump ATPase. *Experimentia* 1983; 39:311-312.

70. Khansuwan U. Studies on the Ca^{2+} -ATPase of thalassemic red blood cell membranes. In: A thesis submitted in partial fulfillment of the requirements for the degree of PhD, Mahidol University. 1995.

71. Abdel-Alim MA, Moharram FA, Aboutabl EA and El-Tohamy SF. Constituents of *Melaleuca quinquenervia* Cav. *Journal of Herbs, Spices and Medicinal Plants* 1997; 5:29-37.

72. Arnao MB, Cano A, Hernandez-Ruiz J and et al. Inhibition by L-ascorbic acid and other antioxidants of the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: A new approach for determining total antioxidant status of foods. *Analytical Biochemistry* 1996; 239:255-261.

73. Chaiwungyen V. Antioxidation capacity of extract from medicinal plants effective microorganisms (EM) and serum from cancer patients. A thesis submitted in partial fulfillment of the requirements for the degree of Master, Chiangmai University. 1996

74. George P and Irvine DH. The reaction between metmyoglobin and hydrogen peroxide. *Biochemistry* 1952; 52:511-517.

75. Miller NJ, Rice-Evans C, Davies MJ and et al. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. *Clinical Science* 1993; 84:407-412.

76. Masaki H, Sakaki S, Atsumi T and Sakurai H. Active-oxygen scavenging activity of plant extracts. *Biol Pharm Bull* 1995; 18:162-166.

77. Robak J and Gryglewski RJ. Flavonoids are scavengers of superoxide anions. *Biochemical Pharmacology* 1988; 37:837-841.

78. Niggli V, Zurini M and Carafoli E. purification and molecular characterization of the Ca^{2+} -pump of plasma membranes. *Methods in Enzymol* 1987; 139:791-808.

79. Read SM and Northcote DH. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. *Anal Biochem* 1981; 116:53-64.

80. Sarkadi B, Enyedi A, Foldes-Papp Z and Gardos G. Molecular characterization of the *in situ* red cell membrane calcium pump by limited proteolysis. *J Biol Chem* 1986; 261:9552-9557.

81. Kashiwada Y, Morita M, Nonaka G and Nishioka I. Tannins and related compounds XCI isolation and characterization of proanthocyanidins with an intramolecularly doubly-linked unit from the fern, *Dicranopteris pedata* Houtt. *Chem Pharm Bull* 1990; 38:856-860.

82. Middleton E. Plant flavonoid effects on mammalian cell systems. *Herbs, Spices and Medicinal Plants: Recent Advances in Botany, Horticulture, and Pharmacology*, volume 3, Craker LE and Simon JE, editors. Oryx Press, USA. 1988.

83. Laughton MJ, Evans PJ and Moroney MA and et al. Inhibition of mammalian 5-lipoxygenase and cyclooxygenase by flavonoids and phenolic dietary additives: relationship to antioxidant activity and iron-reducing ability. *Biochemical Pharmacology* 1991; 42:1673-1681.

84. Morel I, Lescoat G, Cognel P and et al. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron loaded rat hepatocyte cultures. *Biochemical Pharmacology* 1993; 45:13-19.

85. Bors W, Heller W, Michel C and Saran M. Flavonoids as antioxidant: determination of radical scavenging efficiencies In: *Medthods in Enzymology*. Academic Press, New York. 1990; 186:343-355.

86. Plumb GW, De Pascual-Teresa S, Santos-Buelga C and et al. Antioxidant properties of catechins and proanthocyanidins: effect of polymerization, galloylation and glycosylation. *Free Radic Res* 1998; 29:351-358.

87. Strube M, Haenen G.RMM, Van Den Berg H and Bast A. Pitfalls in a method for assessment of total antioxidant capacity. *Free Rad Res* 1996; 26:515-521.

88. Hatano T, Yasuhara T, Yoshihara R and et al. Effects of interaction of tannins with co-existing substances VII inhibitory effects of tannins and related polyphenols on xanthine oxidase. *Chem Pharm Bull* 1990; 38:1224-1229.

89. Rohn TT, Hinds TR and Vincenzi FF. Ion transport ATPase as targets for free radical damage: protection by an aminosteroid of the Ca^{2+} pump ATPase and Na^+/K^+ pump ATPase of human red blood cell membranes. *Biochemical Pharmacology* 1993; 46:525-534.

90. Rohn TT, Hinds TR and Vincenzi FF. Inhibition of Ca^{2+} -pump ATPase and the Na^+/K^+ -pump ATPase by iron-generated free radicals: protection by 6,7-dimethyl-2,4-di-1-pyrolidinyl-7H-pyrrolo[2,3-d]pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. *Biochemical Pharmacology* 1996; 51:471-476.

91. Trump BF and Berezesky IK. Calcium-mediated cell injury and cell death. *The FASEB Journal* 1995; 9:219-228.

92. Wang KKW, Roufogalis BD and Villabolo A. Further characterization of calpain-mediated proteolysis of the human erythrocyte plasma membrane Ca^{2+} -ATPase. *Arch Biochem Biophys* 1988; 267:317-327.

93. Folk JE. Transgutaminases. *Annu Rev Biochem* 1980; 49:517-531.

94. Fawthrop DJ, Boobis AR and Davies DS. Mechanism of cell death. *Arch Toxicol* 1991; 65:427-444.

95. Haslam E, Lilley TH, Cai Y and et al. Traditional herbal medicines-the role of polyphenols. *Planta Medica* 1989; 55:1-6.

96. Dauer A, Metzner P and Schimmer O. Proanthocyanidins from the bark of *Hamamelis virginiana* exhibit antimutagenic properties against nitroaromatic compounds. *Planta Med* 1998; 64:324-327.

97. Bagchi D, Grag A, Krohn RL and et al. Oxygen free radical scavenging abilities of vitamin C and E' and a grape seed proanthocyanidin extract in vitro. *Res Commun Mol Pathol Pharmacol* 1997; 95:178-189.

98. Bagchi D, Grag A, Krohn RL and et al. Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. *Gen Pharmacol* 1998; 30:771-776.

99. Lhieochaiphant S. *Phytotannin, Text of Pharmacognosy*. Department of Pharmacognosy, Faculty of Pharmacy. 1988.