CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT (English)	iv
ABSTRACT (Thai)	v
LIST OF TABLES	xiii
LIST OF FIGURES	ХХ
LIST OF SCHEMES	xxviii
SOME ABBREVIATIONS AND SYMBOLS	xxix
TO THE SECOND STATE OF THE	AAIA
CHAPTER 1	
RING-OPENING POLYMERISATION OF CYCLIC ESTERS	4
1.1 Introduction	1
	1
1.2 Ring-Chain Equilibria	5
1.2.1 Previous Experimental Observations	6
1.2.2 The Jacobson-Stockmayer Theory	7
1.3 Thermodynamic Approach	9
1.4 Factors Affecting Ring Polymerisability	14
1.4.1 Internal Chemical Structure within the Ring	14
1.4.2 Ring Strain	15
1.4.2.1 The Baeyer Ring Strain Theory	15
1.4.2.2 Ring Strain Energy	16
1.4.2.3. Ring Strain and Polymerisability of Cyclic Esters	21
1.4.3 Ring Substitution	24
1.4.4 Type of Initiator/Catalyst Used	26
1.4.5 Nature of the Reaction Conditions Employed	27
1.5 Polymerisation Mechanisms	29
1.5.1 Cationic Mechanism	29
1.5.2 Anionic Mechanism	29 31
1.5.3 Coordination Mechanism	
	32
1.5.4 Free Radical Mechanism	33

	1.5.5	Active Hydrogen Transfer Mechanism	34
1.6	Aims	of This Study	35
СН	APT	ER 2	
MA	TER	IALS AND INSTRUMENTAL METHODS	38
2.1	Chem	nicals, Apparatus and Instruments	38
	2.1.1	Chemicals	38
	2.1.2	Apparatus and Instruments	39
2.2	Mono	mer Preparation, Purification and Structural Analysis	40
	2.2.1	Commercial Monomers	40
		2.2.1.1 β-Propiolactone	40
		2.2.1.2 β-Butyrolactone	42
		2.2.1.3 Pivalolactone	44
		2.2.1.4 γ-Butyrolactone	46
		2.2.1.5 δ-Valerolactone	50
		2.2.1.6 ε-Caprolactone	53
	2.2.2	Synthesized Monomers	56
		2.2.2.1 α-Methyl-β-Propiolactone	56
		2.2.2.2 Glycolide	60
		2.2.2.3 L-Lactide	69
		2.2.2.4 Tetramethyl Glycolide	74
2.3	Instru	mental Methods	81
	2.3.1	Infrared Spectroscopy	83
	2.3.2	Raman Spectroscopy	86
	2.3.3	Proton Nuclear Magnetic Resonance Spectroscopy	87
	2.3.4	Molecular Modelling	88
	2.3.5	Differential Scanning Calorimetry (DSC)	89
	2.3.6	Thermogravimetry (TG)	91
	2.3.7	Vapour Pressure Osmometry .	93
	2.3.8	Gel Permeation Chromatography (GPC)	96
	2.3.9	Viscometry	101
	٠	2.3.9.1 Dilute-Solution Viscometry	103
		2.3.9.2 Undiluted Monomer-Polymer Viscometry	107

	2.3.10	0 Dilatometry	110
	2.3.1	1 Gravimetry	113
СН	APTE	ER 3	
RII	NG-01	PENING POLYMERISATIONS : EFFECTS OF	
RE	ACTI	ON CONDITIONS AND MONOMER STRUCTURE	115
3.1	γ-Buty	rolactone	117
	3.1.1	Polymerisation Procedure	117
	3.1.2	Results and Conclusions	119
3.2	δ-Vale	erolactone	120
	3.2.1	Polymerisation Procedure	120
	3.2.2	Polymerisation Results	120
	3.2.3	Polymer Characterisation	127
		3.2.3.1 Chemical Structure	127
		3.2.3.2 Temperature Transitions	129
		3.2.3.3 Thermal Stability	131
		3.2.3.4 Molecular Weight	132
3.3	ε-Cap	rolactone	139
	3.3.1	Polymerisation Procedure	139
	3.3.2	Polymerisation Results	141
	3.3.3	Polymer Characterisation	146
		3.3.3.1 Chemical Structure	146
		3.3.3.2 Temperature Transitions	148
		3.3.3.3 Thermal Stability	150
		3.3.3.4 Molecular Weight	151
3.4	Glyco	lide	163
	3.4.1	Polymerisation Procedure	163
	3.4.2	Polymerisation Results	164
	3.4.3	Polymer Characterisation	173
		3.4.3.1 Chemical Structure	173
		3.4.3.2 Temperature Transitions	175
		3.4.3.3 Thermal Stability	176
		3.4.3.4 Molecular Weight	177

3.5	L-Lactide	178
	3.5.1 Polymerisation Procedure	178
	3.5.2 Polymerisation Results	179
	3.5.3 Polymer Characterisation	187
	3.5.3.1 Chemical Structure	187
	3.5.3.2 Temperature Transitions	189
	3.5.3.3 Thermal Stability	191
	3.5.3.4 Molecular Weight	192
3.6	Tetramethyl Glycolide	199
	3.6.1 Polymerisation Procedure	199
	3.6.2 Polymerisation Results	199
3.7	Main Conclusions	200
СН	IAPTER 4	
RII	NG-OPENING POLYMERISATIONS : KINETIC STUDIES	203
4,1	Dilatometry	204
	4.1.1 Dilatometer Design and Calibration	204
	4.1.2 Experimental Procedure and Results	205
	4.1.2.1 δ-Valerolactone	206
	4.1.2.2 ε-Caprolactone	215
	4.1.3 Kinetic Analysis	224
	4.1.3.1 Zero-Order Rate Constants	229
4.2	Gravimetry	231
	4.2.1 Experimental Procedure and Results	231
	4.2.2 Kinetic Analysis	232
4.3	Viscosity	237
	4.3.1 Experimental Procedure and Results	237
	4.3.2 Kinetic Analysis	244
4.4	Main Conclusions	248

CHAPTER 5	
RING STRUCTURE AND POLYMERISABILITY	251
5.1 Introduction	251
5.2 Experimental Results	255
5.3 Main Conclusions	263
CHAPTER 6	
DISCUSSION AND CONCLUSIONS	270
6.1 Effect of Ring Size	270
6.2 Effect of Ring Substitution	275
6.3 Effect of Ester Functionality	281
6.4 Effect of the Type of Initiator/Catalyst Used	285
6.4.1 Anionic Initiation	285
6.4.2 Cationic Initiation	287
6.4.3 Coordination Initiation	292
6.4.4 Comparison of Initiator Efficiency	301
6.5 Effect of the Reaction Conditions Employed	305
6.6 Closing Remarks	311
SUGGESTIONS FOR FURTHER WORK	313
REFERENCES	316
APPENDIX : SUPPORTING PAPERS	323
VITA () *	338

LIST OF TABLES

Table		Page
1.1	Polymerisability of some cyclic hydrocarbons	13
1.2	Heats of combustion of cycloalkanes	19
1.3	Polymerisability of cyclic ester compounds	22
1.4	Bulk polymerisation of D,L-lactide with different	27
	initiators/catalysts at 130°C	
2.1	Chemicals used in this research project	38
2.2	Apparatus and instruments used in this research project	39
2.3	Infrared absorption band assignments for β-propiolactone	41
2.4	Vibrational assignments in the Raman spectrum of	42
	β-propiolactone	
2.5	Infrared absorption band assignments for β-butyrolactone	43
2.6	Vibrational assignments in the Raman spectrum of	44
	β-butyrolactone	
2.7	Infrared absorption band assignments for pivalolactone	45
2.8	Vibrational assignments in the Raman spectrum of pivalolactone	46
2.9	Infrared absorption band assignments for purified γ-butyrolactone	48
2.10	Vibrational assignments in the Raman spectrum for purified	49
	γ-butyrolactone	
2.11	Infrared absorption band assignments for purified δ -valerolactone	51
2.12	Vibrational assignments in the Raman spectrum of purified	52
	δ-valerolactone	
2.13	Infrared absorption band assignments for purified ε-caprolactone	54
2.14	Vibrational assignments in the Raman spectrum of purified	55
	ε-caprolactone	
2.15	Comparison of IR data of α-methyl-β-propiolactone from	58
	synthesis and from reference 86	
2.16	Vibrational assignments in the Raman spectrum of	59
	α-methyl-β-propiolactone	

2.17	Comparison of 1H-NMR chemical shifts of α-methyl-	60
	β-propiolactone from synthesis and from reference 85	
2.18	Comparison of IR data of purified glycolide from synthesis and	66
	from a commercial sample	
2.19	Vibrational assignments in the Raman spectrum of purified	67
	glycolide	
2.20	Infrared absorption band assignments for purified L-lactide	72
2.21	Vibrational assignments in the Raman spectrum of purified	73
	L-lactide	
2.22	1H-NMR chemical shifts and proton assignments for L-lactide	74
2.23	Infrared absorption band assignments for purified tetramethyl glycolide	78
2.24	Vibrational assignments in the Raman spectrum of purified	79
	tetramethyl glycolide	
2.25	1H-NMR chemical shifts and proton assignments for	81
	tetramethyl glycolide	
2.26	Definitions of dilute-solution viscosity quantities	103
3.1	Conditions used in the polymerisation of γ-butyrolactone	119
	and details of the products obtained	
3.2	Summary of δ-valerolactone polymerisation experiments	122
3.3	Polymerisations of δ-valerolactone at 100°C using stannous octoate	123
	as initiator	
3.4	Polymerisations of 8-valerolactone at 150°C using stannous octoate	123
	as initiator	
3.5	Polymerisations of δ-valerolactone at 100°C using boron trifluoride	124
	diethyl etherate as initiator	
3.6		124
	diethyl etherate as initiator	
3.7		125
	as initator	
3.8	Polymerisations of δ -valerolactone at 150°C using lithium t -butoxide	125
0.0	as initator	
3.9	Infrared absorption band assignments for poly(δ-valerolactone)	127
3.10		135
0.10	the PVL synthesized at 100°C using stannous octoate as initiator	
	the Five synthesized at 100°C using standous octobre as initiator	

3.11	GPC molecular weight averages and polydispersity indices for	135
	the PVL synthesized at 150°C using stannous octoate as initiator	
3.12	GPC molecular weight averages and polydispersity indices for the PVL	136
	synthesized at 100°C using boron trifluoride diethyl etherate as initiator	
3.13	GPC molecular weight averages and polydispersity indices for the PVL	136
	synthesized at 150°C using boron triffuoride diethyl etherate as initiator	
3.14	GPC molecular weight averages and polydispersity indices for the PVL	137
	synthesized at 100°C using lithium t-butoxide as initiator	
3.15	GPC molecular weight averages and polydispersity indices for the PVL	137
	synthesized at 150°C using lithium <i>t</i> -butoxide as initiator	
3.16	Summary of ε-caprolactone polymerisation experiments	140
3.17	Polymerisations of ε-caprolactone at 100°C using stannous octoate	142
	as initiator	
3.18	Polymerisations of ε-caprolactone at 150°C using stannous octoate	142
	as initiator	
3.19	Polymerisations of ε-caprolactone at 100°C using boron trifluoride	143
	diethyl etherate as initiator	
3.20	Polymerisations of ε-caprolactone at 150°C using boron trifluoride	143
	diethyl etherate as initiator	
3.21	Polymerisations of ε-caprolactone at 100°C using lithium t-butoxide	144
	as initiator	
3.22	Polymerisations of ε-caprolactone at 150°C using lithium <i>t</i> -butoxide	144
	as initiator	
3.23	Infrared absorption band assignments for poly(ε-caprolactone)	146
3.24	GPC molecular weight averages and polydispersity indices for	153
	the PCL synthesized at 100°C using stannous octoate as initiator	
3.25	GPC molecular weight averages and polydispersity indices for	153
	the PCL synthesized at 150°C using stannous octoate as initiator	
3.26	GPC molecular weight averages and polydispersity indices for the PCL	154
	synthesized at 100°C using boron trifluoride diethyl etherate as initiator	
3.27	GPC molecular weight averages and polydispersity indices for the PCL	154
	synthesized at 150°C using boron trifluoride diethyl etherate as initiator	

3.28	GPC molecular weight averages and polydispersity indices for the PCL	155
	synthesized at 150°C using lithium t -butoxide as initiator	
3.29	Balancing resistance (\(\Delta R \)) for different solution concentrations	157
	of tristearin (calibrant) in CHCl ₃ at 45.0°C	
3.30	Balancing resistance (ΔR) for different solution concentrations	159
	of PCL in CHCl ₃ at 45.0°C	
3.31	Dilute-solution viscosity data and calculated viscosity terms for	161
	PCL in THF at 30°C	
3.32	Comparison of molecular weight averages obtained from	162
	three different methods for the same PCL sample	
3.33	Summary of glycolide polymerisation experiments	165
3.34	Polymerisations of glycolide at 100°C using stannous octoate as initiator	167
3.35	Polymerisations of glycolide at 150°C using stannous octoate as initiator	167
3.36	Polymerisations of glycolide at 180°C using stannous octoate as initiator	168
3.37	Polymerisations of glycolide at 100°C using boron trifluoride diethyl etherate as initiator	168
3.38	Polymerisations of glycolide at 150°C using boron trifluoride	169
	diethyl etherate as initiator	
3.39	Polymerisations of glycolide at 180°C using boron trifluoride diethyl etherate as initiator	169
3.40	Polymerisations of glycolide at 100°C using lithium <i>t</i> -butoxide as initiator	170
3.41	Polymerisations of glycolide at 150°C using lithium <i>t</i> -butoxide as initiator	170
3.42	Polymerisations of glycolide at 180°C using lithium <i>t</i> -butoxide as initiator	171
3.43		173
3.44		180
3.45		181

3.46	as initiator	181
3.47	Polymerisations of L-lactide at 180°C using stannous octoate as initiator	182
3.48	Polymerisations of L-lactide at 100°C using boron trifluoride diethyl etherate as initiator	182
3.49	Polymerisations of L-lactide at 150°C using boron trifluoride diethyl etherate as initiator	183
3.50	Polymerisations of L-lactide at 180°C using boron trifluoride diethyl etherate as initiator	183
3.51	Polymerisations of L-lactide at 100°C using lithium <i>t</i> -butoxide as initiator	184
3.52	Polymerisations of L-lactide at 150°C using lithium <i>t</i> -butoxide as initiator	184
3.53	Polymerisations of L-lactide at 180°C using lithium <i>t</i> -butoxide as initiator	185
3.54	Infrared absorption band assignments for poly(L-lactic acid)	187
3.55	GPC molecular weight averages and polydispersity indices for	194
	the PLLA synthesized at 100°C using stannous octoate as initiator	
3.56	GPC molecular weight averages and polydispersity indices for	194
	the PLLA synthesized at 150°C using stannous octoate as initiator	
3.57	GPC molecular weight averages and polydispersity indices for	195
	the PLLA synthesized at 180°C using stannous octoate as initiator	
3.58	GPC molecular weight averages and polydispersity indices for the	195
	PLLA synthesized at 100°C using boron trifluoride diethyl etherate as initiator	
3.59	GPC molecular weight averages and polydispersity indices for the	196
	PLLA synthesized at 150°C using boron trifluoride diethyl etherate as initiator	
3.60	GPC molecular weight averages and polydispersity indices for the	196
	PLLA synthesized at 180°C using boron trifluoride diethyl etherate as initiator	
	we introduce	

3.01	GPC molecular weight averages and polydispersity indices for	197
	the PLLA synthesized at 100°C using lithium <i>t</i> -butoxide as initiator	
3.62	Conditions used in the polymerisation of tetramethyl glycolide	199
4.1	Dilatometric data from δ-valerolactone polymerisation at 80°C	207
4.2	Dilatometric data from δ-valerolactone polymerisation at 90°C	211
4.3	Dilatometric data from ε-caprolactone polymerisation at 80°C	215
4.4	Dilatometric data from ε-caprolactone polymerisation at 90°C	220
4.5	Comparison of the zero-order rate constants, k, and related	230
	kinetic parameters for the δ -valerolactone and ϵ -caprolactone	
	polymerisations at 80°C and 90°C	
4.6	Gravimetric % conversions and GPC molecular weight data	233
	from δ-valerolactone polymerisation at 80°C	
4.7	Gravimetric % conversions and GPC molecular weight data	234
	from δ-valerolactone polymerisation at 90°C	
4.8	Gravimetric % conversions and GPC molecular weight data	235
	from ε-caprolactone polymerisation at 80°C	
4.9	Gravimetric % conversions and GPC molecular weight data	236
	from ε-caprolactone polymerisation at 90°C	
4.10	Undiluted monomer-polymer viscometric data from δ-valerolactone	238
	polymerisation at 80°C	
4.11	Undiluted monomer-polymer viscometric data from δ-valerolactone	239
	polymerisation at 90°C	
4.12	Undiluted monomer-polymer viscometric data from ε-caprolactone	241
	polymerisation at 80°C	
4.13	Undiluted monomer-polymer viscometric data from ε-caprolactone	243
	polymerisation at 90°C	
4.14	Comparison of the reaction parameters at the critical condition for	245
	viscosity increase in the polymerisations of δ -valerolactone	
	and ε-caprolactone at 80°C and 90°C from undiluted monomer-	
	polymer viscometry	

- 5.1 Comparison of the bond angles and bond lengths in unsubstituted 256 lactones of different ring sizes, as calculated from molecular modelling
- 5.2 Comparison of the strain energies and reported thermodynamic 259 polymerisation parameters, including ΔH_p values calculated from molecular modelling, for the range of cyclic esters studied
- 5.3 Comparison of the bond vibrational frequencies from FT-IR, FT-Raman 261 and molecular modelling for the range of cyclic esters studied

LIST OF FIGURES

Figure		Page
1.1	Free energy of polymerisation of unsubstituted cycloalkanes	13
	as a function of the number of atoms in the ring, X	
1.2	Comparison of the heats of combustion of two substances	18
1.3	Cycloalkane strain energy as a function of ring size	18
1.4	Conformation of cyclopropane	20
2.1	Infrared spectrum of β-propiolactone	40
2.2	Raman scattering spectrum of β-propiolactone	41
2.3	Infrared spectrum of β-butyrolactone	42
2.4	Raman scattering spectrum of β-butyrolactone	43
2.5	Infrared spectrum of pivalolactone	44
2.6	Raman scattering spectrum of pivalolactone	45
2.7	Vacuum distillation apparatus used for monomer purification	47
2.8	Infrared spectrum of purified γ-butyrolactone	47
2.9	Reference infrared spectrum of γ-butyrolactone	48
2.10	Raman scattering spectrum of purified γ-butyrolactone	49
2.11	Infrared spectrum of purified δ-valerolactone	50
2.12	Reference infrared spectrum of δ-valerolactone	51
2.13	Raman scattering spectrum of purified δ-valerolactone	52
2.14	Infrared spectrum of purified ε-caprolactone	53
2.15	Reference infrared spectrum of ε-caprolactone	54
2.16	Raman scattering spectrum of purified ε-caprolactone	55
2.17	Infrared spectrum of α-methyl-β-propiolactone	57
2.18	Raman scattering spectrum of α-methyl-β-propiolactone	58
2.19	60 MHz 1H-NMR spectrum of α-methyl-β-propiolactone	59
	in CCl₄ as solvent at 300K	
2.20	Apparatus used in the two-stage preparation of glycolide	62
2.21	DSC melting peak for recrystallised glycolide showing the	64
	results of purity analysis	
2.22	Infrared spectrum of purified glycolide (from synthesis)	65

2.23	Infrared spectrum of commercial glycolide	65
2.24	Raman scattering spectrum of purified glycolide	67
2.25	60 MHz 1H-NMR spectrum of glycolide in d ₆ -acetone as solvent	68
	at 300K	
2.26	DSC melting peak for recrystallised L-lactide showing the	70
	results of purity analysis	
2.27	Infrared spectrum of purified L-lactide	71
2.28	Reference infrared spectrum of L-lactide	71
2.29	Raman scattering spectrum of purified L-lactide	72
2.30	60 MHz 1H-NMR spectrum of L-lactide in d ₆ -acetone as solvent	73
	at 300K	
2.31	Apparatus used in the preparation of tetramethyl glycolide	75
2.32	DSC melting peak for recrystallised tetramethyl glycolide showing	76
	the results of purity analysis	
2.33	Infrared spectrum of purified tetramethyl glycolide	77
2.34	Reference infrared spectrum of tetramethyl glycolide	78
2.35	Raman scattering spectrum of purified tetramethyl glycolide	79
2.36	60 MHz 1H-NMR spectrum of tetramethyl glycolide in d ₆ -acetone	80
	as solvent at 300K	
2.37	The Jasco Model IR-810 Infrared Spectrometer	84
2.38	The Nicolet Model FT-IR 510 Infrared Spectrometer	85
2.39	The Perkin-Elmer Model FT-IR 1720-X Infrared Spectrometer	85
2.40	The Perkin-Elmer Model FT-Raman 2000 Spectrometer	87
2.41	The Hitachi 60 MHz Model R-1500 ¹ H-NMR Spectrometer	88
2.42	The Perkin-Elmer DSC7 Differential Scanning Calorimeter	90
2.43	A typical non-isothermal TG curve for a polymer showing	91
	the various reaction parameters derived from the curve	
2.44	The Perkin-Elmer TGA 7 Thermogravimetric Analyzer	92
2.45	The Knauer Vapour Pressure Osmometer	95
2.46	Calibration curve for GPC column based on a size exclusion	97
	mechanism	
2.47	GPC column calibration curve showing the molecular weight of	99
	monodisperse polystyrene standards as a function of	
	elution volume in tetrahydrofuran at 25°C	

2.48	Universal calibration in GPC for a variety of different polymers	99
	in tetrahydrofuran at 25°C	
2.49	The Waters Model 510 Gel Permeation Chromatograph	100
2.50	Glass capillary viscometers used in this research project	102
2.51	The Schott-Gerate AVS 300 Automatic Viscosity Measuring System	102
2.52	Reduced and inherent viscosity-concentration plots for a typical	106
	polymer sample	
2.53	Typical viscosity-molecular weight dependence for undiluted	108
	linear homopolymers	
2.54	Liquid lattice model for a polymeric liquid showing	109
	the polymer molecules and the "vacancies" in the lattice	
3.1	Apparatus used for ring-opening polymerisation	118
3.2	Apparatus used for the purification of the crude polymer	118
	by precipitation from solution	
3.3	Comparison of δ-valerolactone conversion-time profiles using	126
	different initiators at (a) 100°C and (b) 150°C	
3.4	Infrared spectrum of purified poly(δ-valerolactone) synthesized	128
	at 150°C for 24 hours using stannous octoate as initiator	
3.5	Reference infrared spectrum of poly(δ-valerolactone)	128
3.6	DSC thermogram of purified poly(δ-valerolactone) synthesized	130
	at 150°C for 24 hours using stannous octoate as initiator	
3.7	TG thermogram of purified poly(δ-valerolactone) synthesized	131
	at 150°C for 24 hours using stannous octoate as initiator	
3.8	GPC curves and data print-out for purified poly(δ-valerolactone)	134
	synthesized at 150°C for 24 hours using stannous octoate as initiator	
3.9	Comparison of PVL number-average molecular weight \overline{M}_n -time	138
	profiles using different initiators at (a) 100°C and (b) 150°C	
3.10	Comparison of ε-caprolactone conversion-time profiles	145
	using different initiators at (a) 100°C and (b) 150°C	
3.11	Infrared spectrum of purified poly(ε-caprolactone) synthesized	147
	at 150°C for 24 hours using stannous octoate as initiator	
3.12	Reference infrared spectrum of poly(ε-caprolactone)	147

3.13	DSC thermogram of purified poly(ε-caprolactone) synthesized	149
	at 150°C for 24 hours using stannous octoate as initiator	
3.14	TG thermogram of purified poly(ε-caprolactone) synthesized	150
	at 150°C for 24 hours using stannous octoate as initiator	
3.15	GPC curves and data print-out for purified poly(ε-caprolactone)	152
	synthesized at 150°C for 12 hours using stannous octoate as initiator	
3.16	Comparison of PCL number-average molecular weight \overline{M}_n -time	156
	profiles using different initiators at (a) 100°C and (b) 150°C	
3.17	Extrapolation of ΔR and $\Delta R/c$ to infinite dilution (c=0) for the	158
	standard solutions of tristearin in CHCl ₃ at 45.0°C	
3.18	Extrapolation of ΔR and $\Delta R/c$ to infinite dilution (c=0) for the	160
	PCL sample solutions in CHCl ₃ at 45.0°C	
3.19	Graphs of reduced and inherent viscosity against concentration for	161
	PCL in THF at 30°C	
3.20	Apparatus used for the ring-opening polymerisation of glycolide	166
3.21	Apparatus used for the purification of crude PGA by hot ethanol extraction	166
3.22	Comparison of glycolide conversion-time profiles using different	172
	initiators at (a) 100°C (b) 150°C and (c) 180°C	
3.23	Infrared spectrum of purified poly(glycolic acid) synthesized at 150°C	174
	for 24 hours using stannous octoate as initiator	
3.24	Reference infrared spectrum of poly(glycolic acid)	174
3.25	DSC thermogram of purified poly(glycolic acid) synthesized	176
	at 150°C for 24 hours using stannous octoate as initiator	
3.26	TG thermogram of purified poly(glycolic acid) synthesized at 150°C	177
	for 24 hours using stannous octoate as initiator	
3.27	Comparison of L-lactide conversion-time profiles using different	186
	initiators at (a) 100°C (b) 150°C and (c) 180°C	
3.28	Infrared spectrum of purified poly(L-lactic acid) synthesized	188
	at 150°C for 24 hours using stannous octoate as initiator	
3.29	Reference infrared spectrum of poly(L-lactic acid)	188

3.30	DSC thermogram of purified poly(L-lactic acid) synthesized	190
	at 150°C for 24 hours using stannous octoate as initiator	
3.31	TG thermogram of purified poly(L-lactic acid) synthesized at 150°C	191
	for 24 hours using stannous octoate as initiator	
3.32	GPC curves and data print-out for purified poly(L-lactic acid)	193
	synthesized at 150°C for 24 hours using stannous octoate as initiator	
3.33	Comparison of PLLA number-average molecular weight \overline{M}_n -time	198
	profiles using different initiators at (a) 100°C (b) 150°C and (C) 180°C	
4.1	Dilatometer used in kinetic studies	205
4.2	Graph of meniscus height, h, against time for δ-valerolactone	209
	polymerisation at 80°C	
4.3	Extrapolation of h to zero time (h_0 at t = 0) for δ -valerolactone	209
	polymerisation at 80°C	
4.4	Kinetic profile from dilatometry of % conversion against time for	210
	δ-valerolactone polymerisation at 80°C	
4.5	Kinetic profile from dilatometry of the rate of polymerisation, $r_{\rm p}$,	210
	against time for δ -valerolactone polymerisation at 80° C	
4.6	Graph of meniscus height, h, against time for δ -valerolactone	213
	polymerisation at 90°C	
4.7	Extrapolation of h to zero time (h_0 at t = 0) for δ -valerolactone	213
	polymerisation at 90°C	
4.8	Kinetic profile from dilatometry of % conversion against time for	214
	δ-valerolactone polymerisation at 90°C	
4.9	Kinetic profile from dilatometry of the rate of polymerisation, $r_{\rm p}$,	214
	against time for δ -valerolactone polymerisation at 90°C	
4.10	Graph of meniscus height, h, against time for ϵ -caprolactone	218
	polymerisation at 80°C	
4.11	Extrapolation of h to zero time (h_0 at t = 0) for ϵ -caprolactone	218
	polymerisation at 80°C	
4.12	Kinetic profile from dilatometry of % conversion against time for	219
	ε-caprolactone polymerisation at 80°C	

4.13	Kinetic profile from dilatometry of the rate of polymerisation, r _p ,	219
	against time for ε-caprolactone polymerisation at 80°C	
4.14	Graph of meniscus height, h, against time for ϵ -caprolactone	222
	polymerisation at 90°C	
4.15	Extrapolation of h to zero time (h_0 at t = 0) for ϵ -caprolactone	222
	polymerisation at 90°C	
4.16	Kinetic profile from dilatometry of % conversion against time for	223
	ε-caprolactone polymerisation at 90°C	
4.17	Kinetic profile from dilatometry of the rate of polymerisation, r_p ,	223
	against time for ε-caprolactone polymerisation at 90°C	
4.18	Zero-order rate plot from dilatometry for δ -valerolactone	225
	polymerisation at 80°C	
4.19	First-order rate plot from dilatometry for δ -valerolactone	225
	polymerisation at 80°C	
4.20	Zero-order rate plot from dilatometry for δ -valerolactone	226
	polymerisation at 90°C	
4.21	First-order rate plot from dilatometry for δ -valerolactone	226
	polymerisation at 90°C	
4.22	Zero-order rate plot from dilatometry for ε-caprolactone	227
	polymerisation at 80°C	
4.23	First-order rate plot from dilatometry for ε-caprolactone	227
	polymerisation at 80°C	
4.24	Zero-order rate plot from dilatometry for ε-caprolactone	228
	polymerisation at 90°C	
4.25	First-order rate plot from dilatometry for ε-caprolactone	228
	polymerisation at 90°C	
4.26	Comparison of gravimetric and dilatometric % conversion-time	233
	profiles for δ-valerolactone polymerisation at 80°C	
4.27	Comparison of gravimetric and dilatometric % conversion-time	234
	profiles for δ-valerolactone polymerisation at 90°C	

4.28	comparison of gravimetric and dilatometric % conversion-time profiles for ε-caprolactone polymerisation at 80°C	235
4.29	Comparison of gravimetric and dilatometric % conversion-time	236
4.23		230
4.00	profiles for ε-caprolactone polymerisation at 90°C	0.40
4.30	Comparison of the viscosity and % conversion-time profiles for	240
	δ-valerolactone polymerisation at 80°C	
4.31	Comparison of the viscosity and % conversion-time profiles for	240
	δ-valerolactone polymerisation at 90°C	
4.32	Comparison of the viscosity and % conversion-time profiles for	242
	ε-caprolactone polymerisation at 80°C	
4.33	Comparison of the viscosity and % conversion-time profiles for	244
	ε-caprolactone polymerisation at 90°C	
4.34	Logarithmic viscosity-time plot for undiluted (bulk) δ -valerolactone	246
	polymerisation at 80°C	
4.35	Logarithmic viscosity-time plot for undiluted (bulk) δ -valerolactone	246
	polymerisation at 90°C	
4.36	Logarithmic viscosity-time plot for undiluted (bulk) ε-caprolactone	247
	polymerisation at 80°C	
4.37	Logarithmic viscosity-time plot for undiluted (bulk) ε-caprolactone	247
	polymerisation at 90°C	
5.1	Comparison of the ΔH_p values calculated in this work by molecular	257
	modelling with reported experimental values for a series of lactones	
	of different ring sizes	
6.1	Comparison of the δ -valerolactone (VL) and ϵ -caprolactone (CL)	273
	conversion-time profiles at 100°C using (a) Sn(Oct) ₂ , (b)BF ₃ ·Et ₂ O	
	and (c) Li(<i>t</i> -OBu) as initiators	
6.2	Comparison of the glycolide (G) and L-lactide (LL) conversion-time	277
	profiles at 150°C using (a) Sn(Oct) ₂ , (b)BF ₃ ·Et ₂ O and (c) Li(<i>t</i> -OBu)	
	as initiators	
6.3	Comparison of the δ-valerolactone (VL) and glycolide (G)	282
	conversion-time profiles at 150°C using (a) Sn(Oct) ₂ , (b)BF ₃ ·Et ₂ O	
	and (c) Li(t-OBu) as initiators	

6.4	Comparison of the δ -valerolactone (VL) and glycolide (G)	284
	conversion-time profiles at 100°C using (a) Sn(Oct) ₂ , (b)BF ₃ ·Et ₂ O	
	and (c) Li(<i>t</i> -OBu) as initiators	
6.5	Comparison of the ε-caprolactone conversion-time profiles	302
	using different initiators at (a) 100°C and (b) 150°C	
6.6	Comparison of the PCL number-average molecular weight	303
	\overline{M}_n -time profiles using different initiators at (a) 100 $^{\circ}$ C and (b) 150 $^{\circ}$ C	
6.7	Effect of temperature on the ε-caprolactone conversion-time profiles	307
	using (a) Sn(Oct) ₂ , (b) BF ₃ ·Et ₂ O and (c) Li(<i>t</i> -OBu) as initiators	
6.8	Effect of temperature on the PCL number-average molecular weight	308
	\overline{M}_n -time profiles using (a) Sn(Oct) ₂ , (b) BF ₃ ·Et ₂ O and (c) Li(<i>t</i> -OBu)	
	as initiators	•

LIST OF SCHEMES

SCHEME		Page
6.1	Reaction mechanism for the lithium <i>t</i> -butoxide-initiated	286
	anionic ring-opening polymerisation of cyclic esters	
6.2	Reaction mechanism for the boron trifluoride diethyl	289
,	etherate-initiated cationic polymerisation of cyclic esters	
	via attack on the endocyclic ring oxygen atom	
6.3	Reaction mechanism for the boron trifluoride diethyl	291
	etherate-initiated cationic polymerisation of cyclic esters	
	via attack on the exocyclic carbonyl oxygen atom	
6.4	Reaction mechanism for the stannous octoate-initiated	295
	coordination polymerisation of cyclic esters via the non-ionic	
	insertion mechanism	
6.5	Reaction mechanism for the stannous octoate-catalysed	299
	coordination polymerisation of cyclic esters via the Lewis	
	acid alcoholysis mechanism	

SOME ABBREVIATIONS AND SYMBOLS

m.pt. melting point (of pure solid monomer)

b.pt. boiling point (of pure liquid monomer)

T_g glass transition temperature

T_c ceiling temperature

T_m crystalline melting point

T_d decomposition temperature

M_n number-average molecular weight

M_w weight-average molecular weight

M_v viscosity-average molecular weight

DP_n number-average degree of polymerisation

ΔG_p free energy change for polymerisation

ΔH_p enthalpy change for polymerisation

ΔS_p entropy change for polymerisation

 ΔS_{m} entropy of melting

 $\Delta H_{\rm m}$ heat of melting

ΔH* heat of melting for a 100% crystalline sample

M_c critical molecular weight for chain entanglement

IR infrared spectroscopy

FT-IR Fourier transform infrared spectroscopy

FT-Raman Fourier transform Raman spectroscopy

NMR nuclear magnetic resonance spectrometry

DSC differential scanning calorimetry

TG thermogravimetry

GPC gel permeation chromatography

SEC size exclusion chromatography