CHAPTER II
PREMILINARIES

In this Chapter, we give some definitions, notations and theorems that
will be used in later chapters.

Thoughout this thesis, our scalar field is the field of real numbers IR and
we let N denote the set of all natural numbers. We note in passing that

all results apply to the complex field C as well.

2.1 Suprema and infima.
Definition 2.1.1 Let S be a subset of IR. '
(i) An element u €IR is said to be an upper bound of Sif s<uforalls €S. In
this case, we may say that S is bounded above.
(i1) An element w € R is said to bealower bound of Sif w<sforals €
S.
Simitarly, in this case, we may say that S is bozmded below.

(1it) S is said to be bounded if it is bounded above as well as bounded below.

Definition 2.1.2 Let S be a subset of R

(i} If Sis bounded above, then an upper bound is said to be a supremum {or a
least upper bound ) of S if it is not greater than any other upper bounds of S.

(i) If S is bounded below, then a lower bound is said to be infimum (or a greatest

Jower bound ) of $ if it is greater than every other lower bound of S.

2.2 Sequence and series
Definition 2.2.1 Let (x) be a sequence of real numbers. We say that (x.)
approaches the lumt x in IR if for any € > 0, there is a positive integer N such
that |

x -xl<€ foraln2W.



We write lim x = xorlim (x)=xorx, —x Note that, whenever the limit
n—o .
exists, it is unique.

Definition 2.22 If (x) is a sequence of real numbers having the limit x, we
say that (x) is a convergent sequence. If (x) does not have a limit, we say

that {x ) is a divergent sequence.

Definition 2.2.3 A sequence {x) of real numbers is said to be bounded if its

range {x_: 1 € IN } is bounded.

Remark 2.24 Let (x) and (y) be two sequences of real numbers such that
lim (x)) = x and lim {y,) = y
() Ea,Be R, then im (o x, + By,) = ax +8y.

({) fx <y forallne IN,thenx < y. See (1], [8] for proofs.

Definition 2.2.5 Let (x) be a sequence of real numbers. We say that (x ) is
Increasing if it satisfies the inequalities

X, << . SX <%, <. .
We say that (x ) is decreasing if it satisfies the irequalities

AR5 AR -3 S

We say that (x} is monotone if it is either increasing, decreasing.

Theorem 226 (See {1}, page 89 Let (x) be a bounded sequence of
real numbers.

@) If (x) is an increasing sequence, then lim (x ) = sup{x_: n €I}

(if) If (x ) is a decreasing sequence, then lim {x ) = inf{x_ :n eIN}



Definition 2.2.7 Let {x) be a sequence of real numbers and let 1, <1, < .. <1,
< .. be a strictly increasging sequence of natural numbers, Then the sequence
in [R given by

(Rp oXp oXp e Xp o)

n

is called a subsequence of {x)} .

Theorem 2.2.8 (See [1], page 97) Let (x,) be a sequence of real numbers. Then
the following statements are equivalent : |
| (i) The sequence (x ) does not converge to x € IR
(i) There exists an g, > 0 such that for any k € IN , there exists 1, € IN

such that r, > k and Exr xt zg, .
k

(iii) There exists an s, > 0 and a subsequence (xr ) of (x) such that

Tk

Px, -xlze, for alin e IN.
Theorem 2.2.8 (See [1], page 98) A bounded sequence of real numbers has a

convergent subsequence.

Definition 2.2.10 A sequence (x) of real numbers is said to be a Cauchy
sequence if for every §> 0 there is a natural number N such that for all natural

number n, m = N, we have Ix, - X 1 <& .

Theorem 2.2.11 (See [1], page 102) A secquence of real numbers is convergent

if and only if it is a Cauchy sequence.



Definition 2.2.12 Let (x) be a real sequence. LetS =x, + %, + .. + x, . Then

, . o0
(S,) is called the sequence of partial sums of the infinite series 2. x, (or we
n=i
write 2. X ).
oo
Definition 2.2.13 The infinite series 2 x, is said to be convergentif the
n=1

sequence (S_) of its partial sums is convergent. If im (S) = S then S is called the

o0 Q o0
sum of the seres X x and we write S = X x. The serles 2 x is said
n=1 n=1 n=i

to be divergent as the sequence (S) of its partial sums is divergent.

o ©
Remark 2214 f X x and X y, converge respectively to x and y, and «
n=1 n=1
. o)
and B are two real numbers, then 2 (ax_ + By) = ox + By. See [8] for
n=1

proofs.
2.3 Metric spaces and normed linear spaces.

Definition 2.3.1 Let X be a set and let d:XxX — IR be a function. If d
satisfies the following conditions, then we say that d is a metric on X and call
the pair (X, d) a metric space.

i) dix,y) =0 - foraﬂx,y e X.

(i) dix,y) = Oifand onlyif x = v.

(iil) élx, y) =dly, x) forallx, vy € X

(iv)dix, z) < dlx, v) +dly, 2z} foralx v, ze X



Definition 2.3.2 Let (X, d) be a metric space. A sequence (x ) of members of X

converges 10 x € X if lim dx,x)=0. When (x) converges to X, we write
N —=» 0

lim x, =xorx, —x. Note that, whenever the limit exists, it is unique.
n— 0

Definition 2.3.3 A sequence (x ) in a metric space is called a Cauchy sequence

if for every & >0 there exists Ne IN such that, if m > N and n >N, then

dix,x)<eg.

Definition 2.3.4 A metric space said to be complete if every Cauchy sequence in

X converges. Note that, IR is complete.

Definition 2.35 lLet X = (X d) and Y = (Y, d ) be metric spaces. A mapping
T:X —Y is said to be continuous at a point x, € X if for every £> 0 there is a
"5>0 such that d (Tx, Tx) < ¢ for all x satisfying d(x, %)< 8. Tissaid to be

continuous if it is continuous at every point of X.

Theorem 2.3.6 {See [5], page 30) A mapping T : X —Y of a metric space (X, d)
into a metric space {Y, d) is continuous at a point x, € X if and only if

X, —X, implies Tx — Tx, .

Definition 2.3.7 Let X be a linear space (or a vector space). A norm on X isa
non-negative real - valved function, written il*ll, such that

(i} ixil =0ifand only ifx =0

(i) Nlaxlt = fat IxIlT  foralla € IRand x € X, and

(i) Hx + yif < lIxll + fiyht forallx,y € X
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A linear space X fumished with a nomm I}t is called a normed linear
space. Every normmed linear space gives rise to the metric dx, y) = lix - yll.
The norm properties easily show that this is a metric on X. [t is called the

metric induced by nomm.
Definition 2.3.8 A Banach space is a complete normed linear space.
2.4 Linear Operators.

Definition 2.4.1 Let X and Y be linear spaces. Let T : X Y . If
Tax + By) = aTx+ BTy for ala,p €IR and %, ye X
we say T is a linear operator or a linear transformation from X into Y. When

Y = IR, we say that T is a linear functional on X.

Theorem 2.4.2 - (See [2], page 519) Let X and Y be normed linear spaces, and
let T : X—Y be a linear operator. If T is continucus at a point, then T is

continuous everywhere, and the confinuity is uniform.

Definition 2.4.3 A linear operator T : X —Y is bounded if there exists M > 0

such that ITxll < M llxll for all x € X. The operator norm for a bounded

T
linear operator T is defined as ITI = P T
res Hixd

Theorem 2.4.4 (See [2], page 520) A linear operator is bounded if and only if it

is continuous.



Definition 245 Let X be a nommed linear space. Then the set of all

bounded linear functional on X constitutes a normmed linear space with norm

T
defined by IITil = f;:g'—‘ﬁ which is called the dual space of X and is denoted
by X .

x20

2.5 Strong and weak convergence.

Definition 25.1 A sequence (x) in a nommed linear space X is said to be
strongly convergent (or convergent in the norm) if there is an x € X such

that lim x =xf{orx, — x).
n —

Definition 252 A sequence (x) in a nommed linear space X is said to be
weakly convergent if there is an x € X such that for every T € X!,
lim Tx = Tx. This is wiitten as x, ——>X.

n—»coo

Remark 2.5.3 (See [6], page 269} Strong limits imply weak limits

2,6 Convex functions.

Definition 2.6.1 A continuous function f : IR —IR is called convex if

X+y
2

_ @ +£©)

(2.1) f ( -

)

for all x, y € IR. If, in addition, the two sides of (2.1} are not equal for all x =y,

then we call { strictly convex.



Definition 2.6.2 A continuous function f : IR— IR is said to be uniformily convex

iffor any >0 and x, > 0, there exists 5> O such that

f(x)+1f(y)
2
for all %, y €IR satisfying Ix - yl 2gmax {Ixi, lyl} >gx_ .

15 <a-5)

Theorem 2.6.3 (See [4], page 6) Iff: IR — IR is a continuous function, then f is
convex if and only if forany x,y € IRand o e [0, 1], flax + (1-o)y <o f(x) +

(1- o) fly).

Theorem 2.64 (See [4], page 6) I f is a strictly convex, then f is

uniformly convex on any bounded interval.

Theorem 2.6.5 (See [1], page 226) Let I be an open interval and suppose that
f:I —IR has a second derivative on I. Then{ is convex on I if and only

if f”(x)zO forallx e I

2.7 Property (R), property (MLUR), property (H), and property {G)

For any Banach space X, we denote S(X) = {x € X: lxll =1} and BX) = x € X :
Ixil < 1}

Definition 2.7.1 Let X be a Banach space. An element x in B(X) is called an
extreme point if for every y,z in B(X) the equality 2x = y+z impliesy = z.
We write Ext B(X) for the set of all extrerne points in B(X). If Ext B(X) = S(X),
then X is called a rotund (R) space, or X has property (R).
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Definition 2.7.2 A Banach space X is said to have the property (MLUR) (or X is
midpomnt locally uniformly rotund) if for any x € S(X) and x_, y, € B(X) with
X, +y, »>2ximplyx -y, — 0.

Definition 2.7.3 A Banach space X is said to have the property (H) if each point
of 3(X} is an H - point of B(X), that is, every weak convergence of point x_in B(X)

to a point in S(X) with Ix Il —1 is a convergence in norm.

Definition 2.7.4 A Banach space X is said to have the property (G) if every point
of S(X) is a denting point of B(X), that is,

% & co (BX)\ (x + £ BX)
forallx € S(X) and all >0 .

Here, co(A) is the convex hull of A, A is the closue of A.
2.8 Property K

Definition 2.8.1 A Banach space X is said to have the property (K) if the weak

topology and norm topology on 3(X) are equivalent.

Theorem 2.8.2 (See [4], page 126) If X is a Banach spaces, X has property (G}
if and only if X is rotund and has the property (K).

2.9 Sequence spaces.

Definition 2.9.1 A sequence space is a linear space whose elements

are sequences in IR under the usual addition and usual scalar multiplication.
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Definition 2.9.2 Let (P, ) be a bounded sequence of positive real numbers larger

(B

than or equal to one. Let £=¢ * be a space of all real se@ences x = (x,)

such that the modular

48

x| <00,
H

y<1}h

plx) =
k

with norm Hxll = inf {A > 0: p(

[ 54

A
This space is called a Nakano sequence space.



