CHAPTER III
GEOMETRY OF NAKANO SEQUENCE SPACES

In this Chapter, we give necessary and sufficient conditions for
a Nakano sequience space to have some particular properties.
More'notations to be used later :
M = sipf{P, :kelN}
X o= X, %, %, ..,%,000, ..)

Xy = 0,00, .0, %, , X5, Kipg s )

Lemma 3.1 Let X = (x,) be an element of 7.
, M X
(i) fO0<a<1,thena p(;) < p(x).
(i) T0<a<1,then plax) < aplx) < px).
{iif) Ifa = 1, then px) < aMp(Ha}E).
(iv) f a > 1, then px) < apx) < plax).
Proof. We prove here for (i) and (ii). The ones for (iii) and (iv) are similar to
these cases. Let a be a real number such that 0 < a < 1. We use the fact that

M . .
a < a® <aforalX e IN. We consider

P(X) = ZKEXKIPK
X N
= ZKaPH“K:"}K

a
> Y caMTE

a

= a" Z K‘%‘Pﬁ
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and

).

IA

Therefore, aMp(g) <p{x) and plax) < a p(x) < p(x) and the proofs of (i} and (ii)
are complete. O
Lemma 3.2 Let x be an element of £.

(i) Ikl <1, then p(x) < lxll .

(i) If fixll > 1, then p{x) = lxl.

(i) fixlt = 1 if and only if p(x) = 1.

(iv) Ixll < 1 if and only if pfx) < 1.

(v) Hxll > 1 if and only if p(x) > 1.
Proof. (i) : Let £ be any real number such that 0 < €< 1 - lixll. This implies
Ixll + ¢ < 1. By definition of Il.-H, there exists A > 0 such that llxll +& > A > lixl

X

and p(l) <1. Then

lix|He

pE < p((T) X) (by Lemma 3.1 (iv))
= pllixli+e )%)
< (Ixl+e) p(fi) (by Lemma 3.1 (i)

< Il +g.
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That is
plx) <lxil+e foralle e (0, 1-xll)
Putting A = {llxll +e : 0 <& <1-1lixli }. We see that lxll = inf A, Since p{x) is
a lower bound of A, p(x) < Hxll .

(ii) : Let & be any real number such that 0 < g < M . This implies

Il
1< (1- g) lIxll < ixll. By definition of lI*ll, we have

1< plomme)
(—e)ilx]}

1 ..
< (T—a)m p(x) (by Lemma 3.1 (ii)).
That is
(1-g) il < pix) forall € € (0, %]—l) .
Putting A = {(1-g) IIxll : 0 < e< ”—?%{-Iltll } , then llxll = sup A. Since p{x) is

an upper bound of A, ixll < p(x) .

(i) : (=} Suppose lIxll = 1, and let gebe any positive real number.
There exists A > 0 such that 1+ >A > lixll = 1 and p(%)s 1. By Lemma 3.1 (iii),
we obtain
X
px) < A pi=)
A
<A
< (14e ).
That is

[pE)IM < 1+ ¢ foralle >0.

This implies p{x) < 1.
If p{x) <1, we choose a teal number a e (0, 1) such that p(x) < a¥ < 1.
From Lemma 3.1 (i), we obtain
X 1
) & —
PC) < 5 ™)
! M

<1 (plx) <a™)
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which implies Iixll < a. But a<1, thus, lixll <1, a contradiction. Therefore,
we conclude that p(x) = 1. |

(<=} Suppose p(x) = 1. By definition of ll-ll, we immediately have Iixll < 1.
Ifilxll < 1, then p{x) < lIxll < 1. A contradiction. Therefore, we conclude that
Izl =1 .

(iv} : (=) Suppose Ixll <1 . By Lemma 32 (i}, we immediately
have
px) < 1.

_ (=) Suppose ilxll = 1. I Ixll = 1, then p(x) = 1, by Lemma 3.2(iif). If

lixlt > 1, then it follows from Lemma 3.2 (i1}, that p(x) > 1.
Therefore, we can conclude that p(x) = 1.

(v) : This follows directly from Lemma 3.2 {iii) and (iv). a

Lemma 3.3 Let x be an element of £.
() £O0<a<1andlxl>a then plx)>a".
@) Ha>1and Xl <a,then pix) <a".
Proof. (i) : Suppose 0 < a<1and Ixlt > a.

Then

>1

1 X

o =i > 1 —

a K>l = "a
= p (%) >1 (by Lemma 3.2 (v))
= a p(%) >a"

= pl)>a"  (by Lemma 3.1 (i)).

Therefore |, lIxll > a implies p{x) > a
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(ii) : Suppose a > 1 and lIxll < a.

Then

i

i

2 <l= p(%) <1 {(by Lemma 3.2 (iv))

= aMp(%) <a”

= px) <a” (by Lemma 3.1 {ii)).

Therefore, IIxll < a implies p(x) < a &
Lemma 3.4 Let X" be a sequence of elements of ¢ .
() I lm ixW =1, then lim px) = 1.
n-» w0 n—w
({) ¥ lim p&)=0,then lim Xl =0.
n-— o n—> o0
Proof. (i) : Suppose lim Il =1. Let € be any positive real number less
n—o

than one. By definition of a limit, there exists N € IN such that
1-g <lXll<l+g foraln>N.

By Lemma 3.3, we obtain

1-sM<p)<+g)* foraln>N,
1

which implies [p(")]M —1. Thatis lim p&)=1.
n—

{ii) Su;;pose Il > 0. Thus we may assume that there exists g €
(0, 1) such that lIKll > & for all n € IN. By Lemma 3.3 (i) , we immediately

have p(x" )} > ¢ ¥ foralln e IN. This implies p(x" ) »> 0. O

Lemma 3.5 Foreach ke IN, let n, : £ — IR be defined by n,(x) =x, for all

X = (xm) € ¢. Then =, is a continuous linear functional on £.
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Proof. Let k € IN. At first, we shall prove that =, is a linear operator. Let

x =),y ={y,) beelomentsof £ ,and &., B € R. Then

_nk(ax + BY) T (ox,, Xy, Xq, ) + BV, Vo Vs, o))

1t

n, ((ox, + By, ax,+ By, ... )
= X+ By,

an(x) + B,y

Therefore, m, is a linear operator.
Next}, we shall prove ®, is continuous at 0. Giveng >0 ,wechoose 6 = ¢. If
for each x = (x_) € £ such that lixll < &, then |
n (x) = Ix/

< =l

< Ikl

<06 = 8.
Therefore, 7, is continuous at 0. By Theorem 242, we immediatsly have 7, a

continuous function. Therefore, n, is a continuous linear functionalon £. [

Corollary 3.6 Let (x) = ((xp)) be a weakly convergent sequence in £, say,
x" ——>x = (x,). Then xj —x, forallk & IN.
Proof. By the definition of weak convergence and Lemma 35, we have

im m (x) = =) foral k € IN. Thisimplies x?—>x, foralk e IN. I
n—>

Theorem 3.7 £ is a Banach space.
Proof. Lot (x ) = ((x2)) be a Cauchy sequence in £. Given € € (0, 1). Thus, there

exists N €N such that lx x Il < g for all n, m =N. By Lemma 32 (i), we obtain
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n

(3.1) pix - m‘)<3M for alln, m= N.

This implies Ix§-3} | <& forallk € IN , for all n, m > N. Thus (xi) is a Cauchy
sequence in IR , for all k € IN. Since IR is complete, for each k € IN, there exists
%, € IR such that x; —»x,. Thatis x; —=x, forallk € IN. Putting x = (x). We

shall show that x —»x andx €£. Foreach1 € IN, by (3.1), we have

(32) pl [xn—xm] | )< sM for alln, m > N.
r

n m n
Since xy-—»x, for all k = 1,2, .. ,1, p( [x x ]|} = pf (x x| |r)' as m —»00,
for alln > N. From (3.2), we have p( [xn—x] |r) < g forallnz N. Thatis
p( [xn—x] lr) < SM forallr € IN , forall n = N. This imples

(3.3) p(xn—x) < BM foralln > N.

By Lemma 3.3(i), we immediately have Ix -xl < & for alln > N. This means

N
that xn ->x . From (33), we see that X -x € £. Since £ is alinear space,

N ,N
x=x -{x -x) € £. Therefore , ¢ is complete. O

Lemma 3.8 Assume x = (x] . x = (x) e £ for al nelN, if plx) - px)
and Xy —x, for ell k € IN |, then X X,

xn

Proof. Suppose that X = X. Thus, by Lemma 3.4(ii}, we have p( ; X)v» 0.

Without loss of generality, we may assume that there exists € € {0, 1) such

x" X" —x

2—x) >g foralln € IN. Since {p(

has a convergent subsequence. Passing through a subsequence, if necessary,

that p( )) is a bounded sequence, it

wea ¢an assume that
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(3.1) p;(x —x) —> g, forsomeg,2 €. '
Since pfx) = lim p_(x[n) and ( p (xln)) is an increasing sequence,
n—> o
p(x) = sup {pix In) -n € IN]. So there exists i € IN such that p(x |i) >plx) - %
.. . = i~ a o}
This implies p(x|]N\i) < 2 Since xp —x, foralk € IN , plx |i) —plx li) and
x"-x )
p( I.) — 0. We consider
2 1
lim pC—2) = lim [p(——l)+p<-—I
1 = © 2 n —» ‘N‘l
= lim p
n—» n—w 'N‘l
x"-x
=0+ hm p( l L)
3> o0 NV
\ 1 B 1
< nlf)noolz P(x llN\i)+ 2 P(x |1N\i)]
1 . n 1
= = lm pk | J+5pk]| )
2 N> IN v 2 N
1 , o n 1
= = lim [pl)-pl L)]+5 plx] )
2 i 5w 1 2 P ’mu
L tim pt) - tim plc” ) 1+5 plx o)
= = m pix)- lim pix .
2 n—>® 1l —> o BAAY!

= % [pkx) - plx Il) ] +% pl l|1~1\i)
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% p(xllmi)+% p(x;lm\i)

P(x IiN \i)

<

o

<

]

o

)} »>¢,. This is contradicting to (3.1). Hence x —»x. O

Therefore, p(xnl 2— X
Theorem 3.9 ¢ has property (H).

Proof. Let x € S(£), x € B(¢) for all n € IN be such thatx —»>x and
'ux“n —»1 = llxi. This implies p() = 1, xt—>x, for all k e IN, by Coroliary
3.6, and p(xn) —1, by Lemma 3.4(i). By Lemma 3.8 , it is obvious thet X =X .
Henca £ has property (H). | a

Theorem 3.10 Ext B{£) c S{¢)
Proof. let x = (x,) € Ext B(¢) then Mxll < 1. Suppose that Iixll <1, by
Lemma 3.2 {iv), we obtain p(x) <1 . Puttingt =1 - plx Imn)' Thus, ‘X1|Pl <t

We choose a number r such that |xllp1 <r<t Since Iim laff = lxllpl.
o =¥ Xy

there exists 8 > 0 such that

t_
@1) faeRandlo-x1<8, then || af -IxM] <=~

3 8 t—
Since |(x, +£2)-X,|<8 end by (31), we have |x, £ 5"~ |x1|P’<——2—r. which

implies
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Let y = {y,) and z = (z,) where

S, .5 k=1

Fpz) = {1 2MD

(Xi>%g) , ST

_ y+2z Sp,'
It is clear that y #z ,x = —— , and py) = Rt PI gy <t Pl )

=1 . Similarly, p(z) <1 . Therefore, Wyll £ 1 and lizll €1 . This is contradicting
1o x € Ext B(£). We conclude that IIxll = 1, ie. x €8(¢). 0

Lemma 3.11 Ifx:(xk)eS(E),xn:(x:)eB(E) for all n € N, and
lx +xIl — 2, then xy % foreachk € IN where P, > 1.
Proof. Suppose Xy —X, for some k € IN where P, >1. Without loss of

generality we may assume that k =1, and then assume that, for some £> 0 ,

P(X 2—x IJ>8 for all n € IN, since x;-»X%,; Since {x) = |X|P1 defines a

uniform convex function on -1, 1], there exists 8 > 0 such that
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p[xn;X L)s(1—5)["("“");"("")] foraln e N,

Thus, for each n € IN , we have

X" +x X"+ X x"+x
p[ > )=p( > I1J+P[ > ||N\1}

< (1-8) [p Ly )2+ P(Zh )} P (X"l )2+ P(Xla )

_ p(x")+p(x)_s[p(X“ll)w(xll)}
\ 2 2

< p(x“)2+ px) 5 p[x“z‘— X |1J

1+1
< ——8¢

= 1-8eg.

o

+
This implies 1 - p[x X

x" +x

)2 e for all ne IN , and thus p( )+> 1. By

x" +x
2

Lemma 34 , we have “—f-—) 1, a contradiction. O

Corollary 3.12 If x = (x,) € 8{£),y =(y) € B{£), and !l y+xll =2, then y, = X,

foreachk € IN where P, >1.
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Proof. Put yn =y for all n € IN. It is obvious that ilyn+xll —2. Thus, by

Lemnma 3.11, we have y; —»x, foralk € IN. Therefore, y, = lim yg =x, for
n—» <

alk € IN. Thatisy, =x, forallk € IN. O

Theorem 3.13 £ is rotund if and only if P, = 1 for at most cne k.

Proof, (=) Suppose on the contrary that Py = 1 for at least 2 k's. Without loss
11

of generality, we may assume that P, =P, = 1. We choose x = (5, 5 0,00, .},

—(3—1— 0,0,0,..)and —(12000 ). It is seen that Hxll = lyll = llzll = 1

y-4,4,,,,...anz_4,4,,,,.... =iyl = llzll = 1,
V+2Z

X = .but y = z. Thus we have x ¢ Ext B{(£). Therefore, S(£) = Ext B(Z).

2
That is £ is not rotund.

(<) Without loss of generality, we may assume P, =1 and P, > 1 for all

k> 2. It suffices to show S{£) cExt B(£) Letx=(x,) € S{¢), y=(y) and

z=(z) € B{¢)be suchthat x = }éz . Then

4 ={2x +y + zll

=Hx+v+&+z

IA

Ix+yH+lx+zH

A

< lixlh + Iyl + lixll + izl

<1+1+1+1

4

t
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which imples liyll =1,z =1, Ix + yll =2 and Iix + zlI'= 2. By Corollary 3.12,
we havex, =y, =z, foralk = 2. Since 1= plx) = ply) = p(z) , ix,l = Iy, = Iz)).

Next, we shall show that y, = 2, . Suppose y, #z, . Thus,y, # Oorz, # 0. If

YitZ

y, =0, then y, = -z, since ly,| =lz,]. Therefore x, = = 0. That is
ly,| # Ix,| , & contradiction. Similarly, for case z, # 0. Hence y, = z,. We deduce

that y, =z, forallk e IN ,ie.y=1z.
O

Lemma 3.4 Assume x = (xP).x = (x) € £ foralln € IN , if p(x ) >1 and
xx =%, forallk € IN, then px) < 1.

Proof. Suppose p(x) >1, we choose a small number € such that p(x) - £> 1.
Since p{x) = sup {p(xl,): neIN}, there exists i € IN such that

b(x L) > plx) - 8. We consider

lim p(xn) = lim p(xnh)

I ~» o0 n-» o
= plx ) (since X —X componentwise)
> plx) -8
> 1.
That is p(xn Y-»»1, & contradiction. ' O

Theorem 3.15 /¢ is MLUR if and only if P, = 1 for at most one k.

Proof. (=) Without loss of generality, we may assume that P, =P, = 1, and let x

11 2 31 n 13

= (== 00 - (2= = (== .

(2,2.0, 0y (4,4. 0,0,0,.) and z (4,4.0,0.0, Jforalln e IN
n

I is clear that Nxll=1 Ny h=llz =1 for alne N,y +2 — 2 and

ly' -2 =1 - 0. This implies £ is not MLUR.
(<) We may assume P, =1 and P, >1foralk = 2. Letx = {x) € 5(£),
n

y =(y)andz =(z2) € B(£)foralin e IN besuch thaty +z —» 2. Then
ly’ +z + 2%l - 4 and
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(3.1) y: + 2] = 2x,

At first, we shall show that Hyn +xll - 2 and Ilzn—l-xll — 2. Suppose llyn+xll -+ 2.
Thus, we may assume that there exists £ € (0, 1) such that llyn +xll <2-¢ for
aln € IN. Thus for eachn € IN,
Iy +z + 2k <My +xih+llz +xl

< 2-8 +liz h+ Il

< 4-g.
This implies 4 - Ily]1 +7z +2l>g foraln € IN. Thatis |!yI1 +z + 2| +4, a
contradiction. Therefore || yn +x i »2. Similarly, | zn +x | 2. By Lemma
311, We have yp—x, and zy - x, for al k> 2 Since Ityn +x # »2and
Ikl =1, 1 yn I 1. Thus, by Lemma 3.4 (i), we have p(yn) —1. Similarly,
p(z’) —»1. Next, we shall show that y* —> %, and 2} —x, . Let (yf’) be any
subsequence of (y7). Then (yi‘l) is a bounded sequence, which then posseses a
subsequence (yfu) such that y;’” —y, for some y, € R .Thus, from (3.1) we

have z;‘” 2%, -y, =2, . Lety ={yy, 2z = () be defined by

G 2] = {(yhzl) , k=1
Ve B T (%) . k22

+
3_’_2_2 . Since p(y””) -1 ,y;':H -y, forellk € IN, we

have ply) <1, by Lemma 3.14. Thus, llyll <1 . Similarly, llzll <1. By assumption,

It is clear that x =

we know that £ is rotund, which impliesx =y =z , that isx, =y, =z, . Hence
y;‘” —»x, and therefore y; —> x,. Similarly , z; —%, . We know now that
yn —¥ componentwise and p(yn) -1 = p(x) . Therefore, by Lemma 38 , we

R .
must have yn —x. Similarly , z — x . Hence we deduce that yn Sz, O
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Theorem 3.16 ¢ has property (G) if and only if P, = 1 for at most one k.
Proof. From the relation
@ < K+®),
and the property (H) of ¢, we see that property (G) and property (R) are
equivalent on {. Hence , by Theorem 3.13, we deduce that £ has property

(G) if and only if P, =1 for at most one k. 0



