CHAPTER III

GEOMETRY OF NAKANO SEQUENCE SPACES

In this Chapter, we give necessary and sufficient conditions for a Nakano sequence space to have some particular properties.

More notations to be used later (

$$\begin{split} M &= \sup \left\{ P_k : k \in |N| \right\} \\ x|_i &= (x_1, x_2, x_3, ..., x_i, 0, 0, 0, ...) \\ x|_{N \setminus i} &= (0, 0, 0, ... 0, x_{i+1}, x_{i+2}, x_{i+3}, ...) \end{split}$$

Lemma 3.1 Let $x = (x_K)$ be an element of ℓ .

- (i) If 0 < a < 1, then $a^{M} \rho(\frac{x}{a}) \le \rho(x)$.
- (ii) If 0 < a < 1, then $\rho(ax) \le a\rho(x) \le \rho(x)$.
- (iii) If $a \ge 1$, then $\rho(x) \le a^M \rho(\frac{x}{a})$.
- (iv) If $a \ge 1$, then $\rho(x) \le a\rho(x) \le \rho(ax)$.

Proof. We prove here for (i) and (ii). The ones for (iii) and (iv) are similar to these cases. Let a be a real number such that 0 < a < 1. We use the fact that $a^M \le a^{P_K} \le a$ for all $K \in IN$. We consider

$$\rho(x) = \sum_{K} |x_{K}|^{P_{K}}$$

$$= \sum_{K} a^{P_{K}} |\frac{x_{K}}{a}|^{P_{K}}$$

$$\geq \sum_{K} a^{M} |\frac{x_{K}}{a}|^{P_{K}}$$

$$= a^{M} \sum_{K} |\frac{x_{K}}{a}|^{P_{K}}$$

$$= a^{M} \rho(\frac{x}{a})$$

and

$$\rho(ax) = \sum_{K} |ax_{K}|^{P_{K}}$$

$$= \sum_{K} a^{P_{K}} |x_{K}|^{P_{K}}$$

$$\leq \sum_{K} a|x_{K}|^{P_{K}}$$

$$= a\sum_{K} |x_{K}|^{P_{K}}$$

$$= a \rho(x)$$

$$\leq \rho(x).$$

Therefore, $a^M \rho(\frac{x}{a}) \le \rho(x)$ and $\rho(ax) \le a \rho(x) \le \rho(x)$ and the proofs of (i) and (ii) are complete.

Lemma 3.2 Let x be an element of ℓ .

- (i) If ||x|| < 1, then $\rho(x) \le ||x||$.
- (ii) If ||x|| > 1, then $\rho(x) \ge ||x||$.
- (iii) $||\mathbf{x}|| = 1$ if and only if $\rho(\mathbf{x}) = 1$.
- (iv) ||x|| < 1 if and only if $\rho(x) < 1$.
- (v) ||x|| > 1 if and only if $\rho(x) > 1$.

Proof. (i) : Let ϵ be any real number such that $0 < \epsilon < 1$ - IIxII. This implies $\|x\| + \epsilon < 1$. By definition of $\|\cdot\|$, there exists $\lambda > 0$ such that $\|x\| + \epsilon > \lambda > \|x\|$ and $\rho(\frac{x}{\lambda}) \le 1$. Then

$$\rho(x) \leq \rho\left(\left(\frac{||x|| + \epsilon}{\lambda}\right) x\right)$$
 (by Lemma 3.1 (iv))
$$= \rho\left(\left(||x|| + \epsilon\right) \frac{x}{\lambda}\right)$$

$$\leq \left(||x|| + \epsilon\right) \rho\left(\frac{x}{\lambda}\right)$$
 (by Lemma 3.1 (ii))
$$\leq ||x|| + \epsilon.$$

That is

$$\rho(x) \le ||x|| + \varepsilon$$
 for all $\varepsilon \in (0, 1 - ||x||)$

Putting $A = \{||x|| + \epsilon : 0 < \epsilon < 1 - ||x|| \}$. We see that $||x|| = \inf A$. Since $\rho(x)$ is a lower bound of A, $\rho(x) \le ||x||$.

(ii) : Let ϵ be any real number such that $0 < \epsilon < \frac{||x||-1}{||x||}$. This implies $1 < (1-\epsilon) ||x|| < ||x||$. By definition of ||•||, we have

$$1 < \rho(\frac{x}{(1-\epsilon)||x||})$$

$$\leq \frac{1}{(1-\epsilon)||x||} \rho(x)$$
 (by Lemma 3.1 (ii)).

That is

(1-
$$\epsilon$$
) $||x|| \le \rho(x)$ for all $\epsilon \in (0, \frac{||x||-1}{||x||})$

Putting $A = \{(1-\epsilon) | \|x\| : 0 < \epsilon < \frac{\|x\|-1}{\|x\|} \}$, then $\|x\| = \sup A$. Since $\rho(x)$ is an upper bound of A, $\|x\| \le \rho(x)$.

(iii) : (\Rightarrow) Suppose ||x|| = 1, and let ϵ be any positive real number. There exists $\lambda > 0$ such that $1+\epsilon > \lambda >$ ||x|| = 1 and $\rho(\frac{x}{\lambda}) \le 1$. By Lemma 3.1 (iii), we obtain

$$\rho(x) \leq \lambda^{M} \rho(\frac{x}{\lambda})$$

$$\leq \lambda^{M}$$

$$\leq (1+\epsilon)^{M}.$$

That is

$$[\rho(x)]^{\frac{1}{M}} \leq 1 + \epsilon \qquad \text{ for all } \epsilon > 0 \; .$$

This implies $\rho(x) \leq 1$.

If $\rho(x) < 1$, we choose a real number $a \in (0, 1)$ such that $\rho(x) < a^M < 1$. From Lemma 3.1 (i), we obtain

$$\rho\left(\frac{x}{a}\right) \le \frac{1}{a^{M}} \rho(x)$$

$$< 1 \qquad (\rho(x) < a^{M})$$

which implies $||x|| \le a$. But a < 1, thus, ||x|| < 1, a contradiction. Therefore, we conclude that $\rho(x) = 1$.

- (\Leftarrow) Suppose $\rho(x)=1$. By definition of $\|\cdot\|$, we immediately have $\|x\| \le 1$. If $\|x\| < 1$, then $\rho(x) \le \|x\| < 1$. A contradiction. Therefore, we conclude that $\|x\| = 1$.
- (iv) : (\Rightarrow) Suppose IIxII < 1 . By Lemma 3.2 (i) , we immediately have

 $\rho(x) < 1$.

(\Leftarrow) Suppose $||x|| \ge 1$. If ||x|| = 1, then $\rho(x) = 1$, by Lemma 3.2(iii). If ||x|| > 1, then it follows from Lemma 3.2 (ii), that $\rho(x) > 1$.

Therefore, we can conclude that $\rho(x) \ge 1$.

(v): This follows directly from Lemma 3.2 (iii) and (iv).

Lemma 3.3 Let x be an element of ℓ .

- (i) If 0 < a < 1 and ||x|| > a, then $\rho(x) > a^{M}$.
- (ii) If $a \geq 1$ and ||x|| < a , then $\rho(x) < a^M$.

Proof. (i) : Suppose 0 < a < 1 and ||x|| > a.

Then

$$\frac{1}{a} ||x|| > 1 \Rightarrow \left\| \frac{x}{a} \right\| > 1$$

$$\Rightarrow \rho \left(\frac{x}{a} \right) > 1 \quad \text{(by Lemma 3.2 (v))}$$

$$\Rightarrow a^{M} \rho \left(\frac{x}{a} \right) > a^{M}$$

$$\Rightarrow \rho(x) > a^{M} \quad \text{(by Lemma 3.1 (i))}.$$

Therefore , ||x||> a implies $\rho(x)>$ a M .

(ii): Suppose a ≥ 1 and ||x|| < a.

Then

$$\left\| \frac{x}{a} \right\| < 1 \Rightarrow \rho(\frac{x}{a}) < 1$$
 (by Lemma 3.2 (iv))
$$\Rightarrow a^{M} \rho(\frac{x}{a}) < a^{M}$$

$$\Rightarrow \rho(x) < a^{M}$$
 (by Lemma 3.1 (iii)).

Therefore, ||x|| < a implies $\rho(x) < a^M$.

Lemma 3.4 Let x^n be a sequence of elements of ℓ .

- (i) If $\lim_{n \to \infty} ||x^n|| = 1$, then $\lim_{n \to \infty} \rho(x^n) = 1$.
- (ii) If $\lim_{n \to \infty} \rho(x^n) = 0$, then $\lim_{n \to \infty} ||x^n|| = 0$.

Proof. (i) : Suppose $\lim_{n\to\infty} ||x^n|| = 1$. Let ϵ be any positive real number less

than one. By definition of a limit, there exists $N \in \mathbb{N}$ such that

$$1 - \varepsilon < ||x^n|| < 1 + \varepsilon$$
 for all $n \ge N$.

By Lemma 3.3, we obtain

$$(1 - \epsilon)^M < \rho(x^n) < (1 + \epsilon)^M$$
 for all $n \ge N$,

which implies $[\rho(x^n)]^{\frac{1}{M}}\to 1$. That is $\lim_{n\to\infty}\rho(x^n)=1$.

(ii) : Suppose $\|x^n\| \to 0$. Thus we may assume that there exists $\epsilon \in (0, 1)$ such that $\|x^n\| > \epsilon$ for all $n \in \mathbb{N}$. By Lemma 3.3 (i) , we immediately have $\rho(x^n) > \epsilon^M$ for all $n \in \mathbb{N}$. This implies $\rho(x^n) \to 0$.

Lemma 3.5 For each $k \in IN$, let $\pi_k : \ell \to IR$ be defined by $\pi_k(x) = x_k$ for all $x = (x_m) \in \ell$. Then π_k is a continuous linear functional on ℓ .

Proof. Let $k \in \mathbb{N}$. At first, we shall prove that π_k is a linear operator. Let $x = (x_m)$, $y = (y_m)$ be elements of ℓ , and α , $\beta \in \mathbb{R}$. Then

$$\pi_{k}(\alpha x + \beta y) = \pi_{k}(\alpha(x_{1}, x_{2}, x_{3}, ...) + \beta(y_{1}, y_{2}, y_{3}, ...))$$

$$= \pi_{k}((\alpha x_{1} + \beta y_{1}, \alpha x_{2} + \beta y_{2}, ...))$$

$$= \alpha x_{k} + \beta y_{k}$$

$$= \alpha \pi_{k}(x) + \beta \pi_{k}(y)$$

Therefore, π_k is a linear operator.

Next, we shall prove π_k is continuous at 0. Given $\epsilon>0$, we choose $\delta=\epsilon$. If for each $x=(x_m)\in \ell$ such that $||x||<\delta$, then

$$\pi_{k}(x) = |x_{k}|$$

$$\leq ||x|_{k}||$$

$$\leq ||x||$$

$$< \delta = \epsilon$$

Therefore, π_k is continuous at 0. By Theorem 2.4.2, we immediately have π_k a continuous function. Therefore, π_k is a continuous linear functional on ℓ .

Corollary 3.6 Let $(x^n) = ((x^n_k))$ be a weakly convergent sequence in ℓ , say, $x^n \xrightarrow{w} x = \langle x_k \rangle$. Then $x^n_k \to x_k$ for all $k \in \mathbb{N}$.

Proof. By the definition of weak convergence and Lemma 3.5, we have $\lim_{n\to\infty}\pi_k(x^n)=\pi_k(x)$ for all $k\in\mathbb{N}$. This implies $x_k^n\to x_k$ for all $k\in\mathbb{N}$. \square

Theorem 3.7 ℓ is a Banach space.

Proof. Let $(x^n) = ((x^n_k))$ be a Cauchy sequence in ℓ . Given $\epsilon \in (0, 1)$. Thus, there exists $N \in \mathbb{N}$ such that $\|x^n - x^m\| < \epsilon^M$ for all n, $m \ge N$. By Lemma 3.2 (i), we obtain

$$\rho(x^n - x^m) < \epsilon^M \text{ for all } n, m \ge N.$$

This implies $|\mathbf{x}_k^n - \mathbf{x}_k^m| < \epsilon$ for all $k \in \mathbb{N}$, for all $n, m \ge N$. Thus (\mathbf{x}_k^n) is a Cauchy sequence in \mathbb{R} , for all $k \in \mathbb{N}$. Since \mathbb{R} is complete, for each $k \in \mathbb{N}$, there exists $\mathbf{x}_k \in \mathbb{R}$ such that $\mathbf{x}_k^n \to \mathbf{x}_k$. That is $\mathbf{x}_k^n \to \mathbf{x}_k$ for all $k \in \mathbb{N}$. Putting $\mathbf{x} = (\mathbf{x}_k)$. We shall show that $\mathbf{x}_k^n \to \mathbf{x}_k$ and $\mathbf{x} \in \ell$. For each $\mathbf{x} \in \mathbb{N}$, by (3.1), we have

(3.2)
$$\rho(|x^n - x^m|) > \epsilon^M \text{ for all } n, m \ge N.$$

Since $x_k^m \to x_k$ for all k = 1, 2, ..., r, $\rho(\lfloor x - x^m \rfloor \vert_r) \to \rho(\lfloor x - x \rfloor \vert_r)$, as $m \to \infty$, for all $n \ge N$. From (3.2), we have $\rho(\lfloor x - x \rfloor \vert_r) \le \varepsilon^M$ for all $n \ge N$. That is $\rho(\lfloor x - x \rfloor \vert_r) \le \varepsilon^M$ for all $r \in N$, for all $n \ge N$. This implies

(3.3)
$$\rho(x^n-x) \le \varepsilon^{M} \text{ for all } n \ge N.$$

By Lemma 3.3(i), we immediately have $||x^n - x|| \le \varepsilon$ for all $n \ge N$. This means that $x \to x$. From (3.3), we see that $x \to x \in \ell$. Since ℓ is a linear space $x = x \to (x \to x) \in \ell$. Therefore, ℓ is complete.

Lemma 3.8 Assume $x = (x_k)$, $x^n = (x_k^n) \in \ell$ for all $n \in \mathbb{N}$, if $\rho(x^n) \to \rho(x)$ and $x_k^n \to x_k$ for all $k \in \mathbb{N}$, then $x^n \to x$.

Proof. Suppose that $x \to x$. Thus, by Lemma 3.4(ii), we have $\rho(\frac{x^n-x}{2}) \to 0$. Without loss of generality, we may assume that there exists $\epsilon \in (0, 1)$ such that $\rho(\frac{x^n-x}{2}) > \epsilon$ for all $n \in \mathbb{N}$. Since $(\rho(\frac{x^n-x}{2}))$ is a bounded sequence, it has a convergent subsequence. Passing through a subsequence, if necessary, we can assume that

(3.1)
$$\rho(\frac{x^n - x}{2}) \to \epsilon_0 \text{ for some } \epsilon_0 \ge \epsilon.$$

Since $\rho(x) = \lim_{n \to \infty} \rho(x|_n)$ and $(\rho(x|_n))$ is an increasing sequence, $\rho(x) = \sup \{ \rho(x|_n) : n \in \mathbb{N} \}$. So there exists $i \in \mathbb{N}$ such that $\rho(x|_i) > \rho(x) - \frac{\varepsilon}{2}$. This implies $\rho(x|_{\mathbb{N} \setminus i}) < \frac{\varepsilon}{2}$. Since $x_k^n \to x_k$ for all $k \in \mathbb{N}$, $\rho(x^n|_i) \to \rho(x|_i)$ and $\rho(\frac{x^n - x}{2}|_i) \to 0$. We consider $\lim_{n \to \infty} \rho(\frac{x^n - x}{2}) = \lim_{n \to \infty} \left[\rho(\frac{x^n - x}{2}|_i) + \rho(\frac{x^n - x}{2}|_{\mathbb{N} \setminus i}) \right]$ $= \lim_{n \to \infty} \rho(\frac{x^n - x}{2}|_i) + \lim_{n \to \infty} \rho(\frac{x^n - x}{2}|_{\mathbb{N} \setminus i})$ $= 0 + \lim_{n \to \infty} \rho(\frac{x^n - x}{2}|_{\mathbb{N} \setminus i})$

$$\leq \lim_{n\to\infty} \left[\frac{1}{2} \left| \rho(x^n) \right|_{|N\setminus i} + \frac{1}{2} \left| \rho(x) \right|_{|N\setminus i} \right]$$

$$= \frac{1}{2} \lim_{n \to \infty} \rho(x^n |_{N \setminus i}) + \frac{1}{2} \rho(x |_{N \setminus i})$$

$$= \frac{1}{2} \lim_{n \to \infty} [\rho(x^n) - \rho(x^n|_i)] + \frac{1}{2} \rho(x|_{N \setminus i})$$

$$= \frac{1}{2} \left[\lim_{n \to \infty} \rho(x^n) - \lim_{n \to \infty} \rho(x^n|_i) \right] + \frac{1}{2} \rho(x|_{N \setminus i})$$

$$= \frac{1}{2} [\rho(x) - \rho(x|_{i})] + \frac{1}{2} \rho(x|_{i})$$

$$= \frac{1}{2} \left[\rho(x) \right]_{N \setminus i} + \frac{1}{2} \left[\rho(x) \right]_{N \setminus i}$$

$$= \left[\rho(x) \right]_{N \setminus i}$$

Therefore, $\rho(\frac{x^n-x}{2}) \to \epsilon_o$. This is contradicting to (3.1). Hence $x^n \to x$.

Theorem 3.9 ℓ has property (H).

Proof. Let $x \in S(\ell)$, $x^n \in B(\ell)$ for all $n \in \mathbb{N}$ be such that $x^n \xrightarrow{w} x$ and $\|x^n\| \to 1 = \|x\|$. This implies $\rho(x) = 1$, $x_k^n \to x_k$ for all $k \in \mathbb{N}$, by Corollary 3.6, and $\rho(x^n) \to 1$, by Lemma 3.4(i). By Lemma 3.8, it is obvious that $x^n \to x$. Hence ℓ has property (H).

Theorem 3.10 Ext $B(\ell) \subset S(\ell)$

Proof. Let $x=(x_k)\in Ext\ B(\ell)$, then $\|x\|\leq 1$. Suppose that $\|x\|<1$, by Lemma 3.2 (iv), we obtain $\rho(x)<1$. Putting $t=1-\rho(x|_{|N\setminus 1})$. Thus, $|x_1|^{P_1}< t$. We choose a number r such that $|x_1|^{P_1}< r< t$. Since $\lim_{\alpha\to\infty_1}|\alpha|^{P_1}=|x_1|^{P_1}$, there exists $\delta>0$ such that

$$(3.1) \quad \text{if } \alpha \in |\mathbb{R} \text{ and } |\alpha - x_1| < \delta \text{, then } \left| |\alpha|^{P_1} - |x_1|^{P_1} \right| < \frac{t-r}{2} \text{.}$$

Since $|(x_1 \pm \frac{\delta}{2}) - x_1| < \delta$ and by (3.1), we have $|x_1 \pm \frac{\delta}{2}|^{P_1} - |x_1|^{P_1} < \frac{t-r}{2}$, which implies

$$|x_1 \pm \frac{\delta}{2}|^{P_1} < |x_1|^{P_1} + \frac{t-r}{2}$$

$$< r + \frac{t-r}{2}$$

$$< \frac{t+r}{2}$$

$$< \frac{t+t}{2}$$

$$= t$$

Let $y = (y_k)$ and $z = (z_k)$ where

$$(y_k, z_k) = \begin{cases} (x_1 + \frac{\delta}{2}, x_1 - \frac{\delta}{2}), & k = 1 \\ (x_k, x_k), & k > 1. \end{cases}$$

It is clear that $y \neq z$, $x = \frac{y+z}{2}$, and $\rho(y) = |x_1 + \frac{\delta}{2}|^{P_1} + \rho(x|_{|N \setminus 1}) < t + \rho(x|_{|N \setminus 1})$ = 1. Similarly, $\rho(z) < 1$. Therefore, $||y|| \leq 1$ and $||z|| \leq 1$. This is contradicting to $x \in Ext \ B(\ell)$. We conclude that ||x|| = 1, i.e. $x \in S(\ell)$.

Lemma 3.11 If $x = (x_k) \in S(\ell)$, $x^n = (x_k^n) \in B(\ell)$ for all $n \in \mathbb{N}$, and $\|x^n + x\| \to 2$, then $x_k^n \to x_k$ for each $k \in \mathbb{N}$ where $P_k > 1$.

Proof. Suppose $x_k^n \to x_k$ for some $k \in \mathbb{N}$ where $P_k > 1$. Without loss of generality we may assume that k = 1, and then assume that, for some $\epsilon > 0$, $\rho\left(\frac{x^n - x}{2} \Big|_1\right) > \epsilon \text{ for all } n \in \mathbb{N}, \text{ since } x_1^n \to x_1. \text{ Since } f(x) = |x|^{P_1} \text{ defines a uniform convex function on } [-1, 1], \text{ there exists } \delta > 0 \text{ such that}$

$$\rho\left(\frac{\mathbf{x}^{\mathbf{n}} + \mathbf{x}}{2} \Big|_{\mathbf{1}}\right) \le (1 - \delta) \left[\frac{\rho\left(\mathbf{x}^{\mathbf{n}}|_{\mathbf{1}}\right) + \rho\left(\mathbf{x}|_{\mathbf{1}}\right)}{2}\right] \text{ for all } \mathbf{n} \in \mathbb{N}.$$

Thus, for each $n \in IN$, we have

$$\rho\left(\frac{\mathbf{x}^{n} + \mathbf{x}}{2}\right) = \rho\left(\frac{\mathbf{x}^{n} + \mathbf{x}}{2}|_{\mathbf{l}}\right) + \rho\left(\frac{\mathbf{x}^{n} + \mathbf{x}}{2}|_{\mathbf{l}^{N}\mathbf{l}}\right)$$

$$\leq (1-\delta)\left[\frac{\rho(\mathbf{x}^{n}|_{\mathbf{l}}) + \rho(\mathbf{x}|_{\mathbf{l}})}{2}\right] + \frac{\rho(\mathbf{x}^{n}|_{\mathbf{l}^{N}\mathbf{l}}) + \rho(\mathbf{x}|_{\mathbf{l}^{N}\mathbf{l}})}{2}$$

$$= \frac{\rho(\mathbf{x}^{n}) + \rho(\mathbf{x})}{2} - \delta\left[\frac{\rho(\mathbf{x}^{n}|_{\mathbf{l}}) + \rho(\mathbf{x}|_{\mathbf{l}})}{2}\right]$$

$$\leq \frac{\rho(\mathbf{x}^{n}) + \rho(\mathbf{x})}{2} - \delta\rho\left(\frac{\mathbf{x}^{n} - \mathbf{x}}{2}|_{\mathbf{l}}\right)$$

$$< \frac{1+1}{2} - \delta\varepsilon$$

$$= 1 - \delta\varepsilon$$

This implies $1 - \rho \left(\frac{x^n + x}{2}\right) \ge \delta \epsilon$ for all $n \in \mathbb{N}$, and thus $\rho \left(\frac{x^n + x}{2}\right) \not \to 1$. By Lemma 3.4, we have $\left\|\frac{x^n + x}{2}\right\| \not \to 1$, a contradiction.

Corollary 3.12 If $x=(x_k)\in S(\ell)$, $y=(y_k)\in B(\ell)$, and $\|y+x\|=2$, then $y_k=x_k$ for each $k\in N$ where $P_k>1$.

Proof. Put $y^n = y$ for all $n \in \mathbb{N}$. It is obvious that $\|y^n + x\| \to 2$. Thus, by Lemma 3.11, we have $y_k^n \to x_k$ for all $k \in \mathbb{N}$. Therefore, $y_k = \lim_{n \to \infty} y_k^n = x_k$ for all $k \in \mathbb{N}$. That is $y_k = x_k$ for all $k \in \mathbb{N}$.

Theorem 3.13 ℓ is rotund if and only if $P_{\mathbf{k}} = 1$ for at most one k.

Proof. (\Rightarrow) Suppose on the contrary that $P_k = 1$ for at least 2 k's. Without loss of generality, we may assume that $P_1 = P_2 = 1$. We choose $x = (\frac{1}{2}, \frac{1}{2}, 0, 0, 0, \dots)$, $y = (\frac{3}{4}, \frac{1}{4}, 0, 0, 0, \dots)$ and $z = (\frac{1}{4}, \frac{3}{4}, 0, 0, 0, \dots)$. It is seen that $\|x\| = \|y\| = \|z\| = 1$, $x = \frac{y+z}{2}$, but $y \neq z$. Thus we have $x \notin Ext B(\ell)$. Therefore, $S(\ell) \neq Ext B(\ell)$. That is ℓ is not rotund.

 $(\Leftarrow) \text{ Without loss of generality, we may assume $P_1=1$ and $P_k>1$ for all $k\geq 2$. It suffices to show $S(\ell) \subset Ext $B(\ell)$. Let $x=(x_k)\in S(\ell)$, $y=(y_k)$ and $z=(z_k)\in B(\ell)$ be such that $x=\frac{y+z}{2}$. Then$

$$4 = ||2x + y + z||$$

$$= ||(x + y) + (x + z)||$$

$$\leq ||x + y|| + ||x + z||$$

$$\leq ||x|| + ||y|| + ||x|| + ||z||$$

$$\leq 1 + 1 + 1 + 1$$

$$= 4$$

which implies ||y||=1, ||z||=1, ||x+y||=2 and ||x+z||=2. By Corollary 3.12, we have $x_k=y_k=z_k$ for all $k\geq 2$. Since $1=\rho(x)=\rho(y)=\rho(z)$, $|x_1|=|y_1|=|z_1|$. Next, we shall show that $y_1=z_1$. Suppose $y_1\neq z_1$. Thus, $y_1\neq 0$ or $z_1\neq 0$. If $y_1\neq 0$, then $y_1=-z_1$, since $|y_1|=|z_1|$. Therefore $x_1=\frac{y_1+z_1}{2}=0$. That is $|y_1|\neq |x_1|$, a contradiction. Similarly, for case $z_1\neq 0$. Hence $y_1=z_1$. We deduce that $y_k=z_k$ for all $k\in IN$, i.e. y=z.

Lemma 3.14 Assume $x^n = (x_k^n)$, $x = (x_k) \in \ell$ for all $n \in \mathbb{N}$, if $\rho(x^n) \to 1$ and $x_k^n \to x_k$ for all $k \in \mathbb{N}$, then $\rho(x) \le 1$.

Proof. Suppose $\rho(x) > 1$, we choose a small number ϵ such that $\rho(x) - \epsilon > 1$. Since $\rho(x) = \sup \{ \rho (x \mid_n) : n \in \mathbb{N} \}$, there exists $i \in \mathbb{N}$ such that $\rho(x \mid_i) > \rho(x) - \epsilon$. We consider

$$\lim_{n \to \infty} \rho(x^n) \ge \lim_{n \to \infty} \rho(x^n |_i)$$

$$= \rho(x |_i) \qquad \text{(since } x^n \to x \text{ componentwise)}$$

$$> \rho(x) - \varepsilon$$

$$> 1$$

That is $\rho(x^n) \rightarrow 1$, a contradiction.

Theorem 3.15 ℓ is MLUR if and only if $P_k = 1$ for at most one k.

Proof. (\Longrightarrow) Without loss of generality, we may assume that $P_1=P_2=1$, and let $x=(\frac{1}{2},\frac{1}{2},0,0,0)$, $y^n=(\frac{3}{4},\frac{1}{4},0,0,0,...)$ and $z^n=(\frac{1}{4},\frac{3}{4},0,0,0,0,...)$ for all $n\in\mathbb{N}$. It is clear that $\|x\|=1$, $\|y^n\|=\|z^n\|=1$ for all $n\in\mathbb{N}$, $y^n+z^n\to 2x$ and $\|y^n-z^n\|=1 \Rightarrow 0$. This implies ℓ is not MLUR.

 $(\Leftarrow) \text{ We may assume } P_1=1 \text{ and } P_k>1 \text{ for all } k\geq 2. \text{ Let } x=\langle x_k\rangle \in S(\ell),$ $y^n=(y^n_k) \text{ and } z^n=(z^n_k) \in B(\ell) \text{ for all } n\in IN \text{ be such that } y^n+z^n\to 2x \text{ . Then }$ $I|y^n+z^n+2x|I\to 4 \text{ and }$

(3.1)
$$y_1^n + z_1^n \to 2x_1$$

At first, we shall show that $||y^n + x|| \to 2$ and $||z^n + x|| \to 2$. Suppose $||y^n + x|| \to 2$. Thus, we may assume that there exists $\epsilon \in (0, 1)$ such that $||y^n + x|| < 2 - \epsilon$ for all $n \in \mathbb{N}$. Thus for each $n \in \mathbb{N}$,

$$||y^{n} + z^{n} + 2x|| \le ||y^{n} + x|| + ||z^{n} + x||$$

$$< 2 - \varepsilon + ||z^{n}|| + ||x||$$

$$\le 4 - \varepsilon.$$

This implies $4 - ||y^n + z^n + 2x|| > \varepsilon$ for all $n \in \mathbb{N}$. That is $||y^n + z^n + 2x|| \rightarrow 4$, a contradiction. Therefore $||y^n + x|| \rightarrow 2$. Similarly, $||z^n + x|| \rightarrow 2$. By Lemma 3.11, We have $y_k^n \rightarrow x_k$ and $z_k^n \rightarrow x_k$ for all $k \ge 2$. Since $||y^n + x|| \rightarrow 2$ and ||x|| = 1, $||y^n|| \rightarrow 1$. Thus, by Lemma 3.4 (i), we have $\rho(y^n) \rightarrow 1$. Similarly, $\rho(z^n) \rightarrow 1$. Next, we shall show that $y_1^n \rightarrow x_1$ and $z_1^n \rightarrow x_1$. Let $(y_1^{n'})$ be any subsequence of (y_1^n) . Then $(y_1^{n'})$ is a bounded sequence, which then possesses a subsequence $(y_1^{n''})$ such that $y_1^{n''} \rightarrow y_1$ for some $y_1 \in \mathbb{R}$. Thus, from (3.1) we have $z_1^{n''} \rightarrow 2x_1 - y_1 = z_1$. Let $y = (y_k)$, $z = (z_k)$ be defined by

$$(y_k, z_k) = \begin{cases} (y_1, z_1), & k = 1 \\ (x_k, x_k), & k \ge 2. \end{cases}$$

It is clear that $x=\frac{y+z}{2}$. Since $\rho(y^{n''})\to 1$, $y_k^{n''}\to y_k$ for all $k\in \mathbb{N}$, we have $\rho(y)\le 1$, by Lemma 3.14. Thus, $\|y\|\le 1$. Similarly, $\|z\|\le 1$. By assumption, we know that ℓ is rotund, which implies x=y=z, that is $x_1=y_1=z_1$. Hence $y_1^{n''}\to x_1$ and therefore $y_1^n\to x_1$. Similarly, $z_1^n\to x_1$. We know now that $y^n\to x$ componentwise and $\rho(y^n)\to 1=\rho(x)$. Therefore, by Lemma 3.8, we must have $y^n\to x$. Similarly, $z^n\to x$. Hence we deduce that $y^n\to z^n$. \square

Theorem 3.16 ℓ has property (G) if and only if $P_k=1$ for at most one k.

Proof. From the relation

and the property (H) of ℓ , we see that property (G) and property (R) are equivalent on ℓ . Hence, by Theorem 3.13, we deduce that ℓ has property (G) if and only if $P_k=1$ for at most one k.