CHAPTER III

CYCLICALLY INJECTIVE RINGS

In this chapter, we will study principally N-injective modules, cyclically injective rings and their applications to V-rings, P-V-rings and regular rings.

1. Principally N-Injective Modules

Definition. Let R be a ring, M and N be right R-modules. M is called principally N-injective (P-N-injective) if every R-homomorphism $f: nR \longrightarrow M$, $n \in N$, extends to N. In case M is principally R-injective, we call M a principally injective (P-injective) module.

3.1.1 Examples.

- (1). Every injective module is P-N-injective for all right R-modules N.
- (2). If every cyclic submodule of M is a direct summand of M, then M is P-M-injective.
 - (3). Q_7 is P-nZ-injective where n positive integer.
 - (4). If R is a regular ring, then every right R-module is P-injective.

3.1.2 Some properties of principally N-injective modules.

Let R be a ring. Then we have:

- (1) If M_R is P-N-injective and $A_R \cong M_R$, then A_R is P-N-injective.
- (2) If M_R is P-N-injective and $A_R \cong N_R$, then M_R is P-A-injective.
- (3) M_R is P-N-injective if and only if M_R is P-A-injective for all submodules A of N.
- (4) If M_R is P-N-injective and every cyclic submodule of N_R is projective, then M/K is P-N-injective for all submodules K of M.

- **Proof.** (1). Let M_R be P-N-injective and $A_R \cong M_R$. We will show that A_R is P-N-injective. Let $n \in N$, $f: nR \to A$ be an R-homomorphism and $i: nR \to N$ be an inclusion map. Since $A_R \cong M_R$, there exists $g: A \to M$ an R- isomorphism. Because M_R is P-N-injective, so there exists $h: N \to M$ an R-homomorphism such that hi = gf. Let $f^* = g^{-1}h$. We get that $f^*i = g^{-1}hi = g^{-1}gf = f$. This means that A_R is P-N-injective.
- (2). Let M_R be P-N-injective and $A_R \cong N_R$. We will show that M_R is P-A-injective. Let $a \in A$, $f: aR \to M$ be an R-homomorphism and $i: aR \to A$ be an inclusion map. Since $A_R \cong N_R$, there exists $g: N \to A$ an R- isomorphism. Because $a \in A$, so g(n) = a for some $n \in N$. Let $g = g|_{nR}$ and $i': nR \to N$ be an inclusion map. We get that gi' = ig. Since M_R is P-N-injective, there exists $h: N \to M$ an R-homomorphism such that hi' = fg. Let $f = hg^{-1}$. We get that $f = hg^{-1}ig = hg^{-1}i$
- (3). (\Rightarrow) Let M_R be P-N-injective and A be a submodule of N. We will show that M_R is P-A-injective. Let $a \in A$, $f: aR \to M$ be an R-homomorphism and $i: aR \to A$ be an inclusion map. Since $A \subset N$, aR is a cyclic submodule of N. Let $i': A \to N$ be an inclusion map. Because M_R is P-N-injective, so there exists $h: N \to M$ an R-homomorphism such that hi'i = f. It follows that M_R is P-A-injective.
- (\Leftarrow) Assume that M_R is P-A-injective for all submodules A of N. Because $N \subset_{>} N$, by assumption we get that M_R is P-N-injective.
- (4). Assume that M_R is P-N-injective and every cyclic submodule of N is projective. Let $n \in N$, $f: nR \longrightarrow M/K$ be an R-homomorphism and $i: nR \longrightarrow N$ be an inclusion map. We have $\eta: M \longrightarrow M/K$ is a natural homomorphism. By

assumption, we get that nR is projective. Then there exists $g: nR \to M$ an R-homomorphism such that $\eta g = f$. Because M_R is P-N-injective, there exists $h: N \to M$ an R-homomorphism such that hi = g. Let $f^* = \eta h$. Hence we get that $f^*i = \eta hi = \eta g = f$. Therefore M/K is P-N-injective.

3.1.3 Direct product and direct sum of principally N-injective modules.

- (1) If M_R is P-N-injective and A_R is a direct summand of M_R , then A_R is P-N-injective.
- (2) A product $\prod_{i \in I} M_i$ is P-N-injective if and only if each M_i is P-N-injective.
- (3) A sum $\bigoplus_{i \in I} M_i$ is P-N-injective if and only if each M_i is P-N-injective.
- **Proof.** (1). Let M_R be P-N-injective and A be a direct summand of M. Then $M = A \oplus K$ for some submodule K of M. We will show that A is P-N-injective. Let $n \in N$, $f : nR \longrightarrow A$ be an R-homomorphism and $i : nR \longrightarrow N$ be an inclusion map. We have $\eta_A : A \longrightarrow A \oplus K$ is an injection map. Since M_R is P-N-injective, there exists $g : N \longrightarrow M$ an R-homomorphism such that $gi = \eta_A f$. In fact, if $\pi_A : M \longrightarrow A$ is a projection map, then $\pi_A \eta_A = I_A$. Let $h = \pi_A g$. We get that $hi = \pi_A gi = \pi_A \eta_A f = f$. It follows that A is P-N-injective.
- (2). (\Rightarrow) Assume that $\prod_{i \in I} M_i$ is P-N-injective. We will show that M_i is P-N-injective for all $i \in I$. Let $n \in N$, $f : nR \longrightarrow M_i$ be an R-homomorphism and $t : nR \longrightarrow N$ be an inclusion map. We have $\eta_i : M_i \longrightarrow \prod_{i \in I} M_i$ is an injection map. Since $\prod_{i \in I} M_i$ is P-N-injective, there exists $g : N \longrightarrow \prod_{i \in I} M_i$ an R-homomorphism such that $gt = \eta_i f$. Let $\pi_i : \prod_{i \in I} M_i \longrightarrow M_i$ be a projection map. Putting $h = \pi_i g$, we get that $ht = \pi_i gt = \pi_i \eta_i f = f$. It follows that M_i is P-N-injective.
- (\Leftarrow) Assume that M_i is P-N-injective for all $i \in I$. We will show that $\prod_{i \in I} M_i$ is P-N-injective. Let $n \in N$, $f: nR \longrightarrow \prod_{i \in I} M_i$ be an R-homomorphism and $t: nR \longrightarrow N$

be an inclusion map. We have $\pi_i: \prod_{i\in I} M_i \longrightarrow M_i$ be a projection map. Since M_i is P-N-injective, there exists $h_i: N \longrightarrow M_i$ an R-homomorphism such that $h_i t = \pi_i f$. For each $x \in N$, define

$$h: N \longrightarrow \prod_{i \in I} M_i$$
 by $\pi_i h(x) = h_i(x)$ for all $i \in I$

Since the π_i and the h_i are R-homomorphisms, it follows that h defines an R-homomorphism. Moreover $\pi_i h = h_i$ for all $i \in I$. We have $\pi_i h \iota = h_i \iota = \pi_i f$ for all $i \in I$. So $h \iota = f$. It follows that $\prod_{i \in I} M_i$ is P-N-injective.

- (3) (\Rightarrow) Since M_i is a direct summand of $\bigoplus_{i \in I} M_i$ for all $i \in I$, by (1) we get that M_i is P-N-injective for all $i \in I$.
- (\Leftarrow) Assume that M_i is P-N-injective for all $i \in I$. We will show that $\bigoplus_{i \in I} M_i$ is P-N-injective. Let $n \in N$, $f : nR \to \bigoplus_{i \in I} M_i$ be an R-homomorphism and $t : nR \to N$ be an inclusion map. Put $f(n) = (m_i)_{i \in I}$, then m_i is zero for almost all $i \in I$. We get that $f(nR) = f(n)R \subseteq \bigoplus_{i \in F} M_i$ for some finite subset F of I. Since $\bigoplus_{i \in F} M_i = \prod_{i \in F} M_i$ is P-N-injective by (2), there exists $h : N \to \bigoplus_{i \in F} M_i$ an R-homomorphism such that hi = f. Because $\bigoplus_{i \in F} M_i \subseteq \bigoplus_{i \in I} M_i$, so $h : N \to \bigoplus_{i \in I} M_i$ an R-homomorphism such that hi = f. Therefore $\bigoplus_{i \in I} M_i$ is P-N-injective. \square

2. Cyclically Injective Rings

Definition. Let R be a ring. R is a cyclically injective ring (C-ring) if every simple right R-module is P-N-injective for all cyclic right R-modules N. Equivalently, R is a C-ring if and only if every simple right R-module is P-R/I-injective for all right ideals I of R.

3.2.1 Examples.

- (1). Every V-ring is a C-ring.
- (2). Every division ring is a C-ring.

Proof. Let R be a division ring. We want to prove that R is a C-ring. Let S be a simple right R-module and I be a right ideal of R. Since R is a division ring, R and 0 are the only right ideals of R. We will show that S is P-R-injective. If I = 0, let $0 \neq a \in R$, f: $aR \rightarrow S$ be an R-homomorphism and $i : aR \rightarrow R$ be an inclusion map. Thus aR = R. Put h = f, we have hi = f. This means that S is P-R-injective. Because R0 $\cong R$ 1, by 3.1.2(2), we get that S1 is P-R0-injective. If I = R2, we have R2 $\cong R$ 3. Since S3 is P-R3-injective by 3.1.2(2). Hence R3 is R5-R4.

(3). Z_{4n} is not a C-ring where $n \ge 1$.

Proof. First, we will show that $\overline{2}Z_{4n}$ is maximal. Let A be a right ideal of Z_{4n} and $\overline{2}Z_{4n} \subset A \subseteq Z_{4n}$. Thus there exists $\overline{a} \in A \setminus \overline{2}Z_{4n}$, so $\overline{a} \neq \overline{2}\overline{x}$ for all $\overline{x} \in Z_{4n}$. That is $a \neq 2x$ for all $x \in Z$. This implies that (a, 2) = 1. Thus 1 = as + 2r for some $s, r \in Z$. We get that $\overline{1} = \overline{as} + \overline{2r} \in A$, so $A = Z_{4n}$. Hence $\overline{2}Z_{4n}$ is maximal. This means that Z_{4n} is simple. We want to show that Z_{4n} is not a C-ring. Suppose that Z_{4n} is a C-ring. Define

$$f: \bar{2}Z_{4n} \to Z_{4n}$$
 by $f(\bar{2}m) = m + \bar{2}Z_{4n}$ for all $m \in Z_{4n}$

Next, we will show that f is well-defined. Let $\overline{2m} = \overline{0}$, then $4n \mid 2m$. That is 2m = 4nl for some $l \in \mathbb{Z}$. We have m = 2nl. So $\overline{m} \in \overline{2}Z_{4n}$. Thus f is well-defined and it is clear that f is a Z_{4n} -homomorphism. Because Z_{4n} is a C-ring, there exists $h: Z_{4n} \longrightarrow Z_{4n}$ a Z_{4n} -homomorphism such that hi = f where $i: \overline{2}Z_{4n} \longrightarrow Z_{4n}$

is an inclusion map. Since $\overline{1} \in Z_{4n}$, $h(\overline{1}) \in \overline{Z_{4n}}$. Put $h(\overline{1}) = \overline{w} + \overline{2}Z_{4n}$ for some $\overline{w} \in Z_{4n}$. Consider $h(\overline{1} + \overline{1}) = h(\overline{1}) + h(\overline{1}) = (\overline{w} + \overline{2}Z_{4n}) + (\overline{w} + \overline{2}Z_{4n}) = \overline{2w} + \overline{2}Z_{4n}$ and $h(\overline{2}) = hi(\overline{2}) = f(\overline{2}) = f(\overline{2} \cdot \overline{1}) = \overline{1} + \overline{2}Z_{4n}$. So $\overline{2w} - \overline{1} \in \overline{2}Z_{4n}$ which is a contradiction. Hence Z_{4n} is not a C-ring.

3.2.2 A characterization of C-rings.

The following conditions are equivalent:

- (1) R is a C-ring.
- (2) For each right ideal I of R, each principal right ideal P of R, each maximal subideal K containing I of P+I, there exists a maximal right ideal M containing I of R such that $K = M \cap (P+I)$.

Let $k \in K$, we have $0 = \pi(k+I) = hi(k+I) = h(k+I)$. That is $k+I \in Ker \ h = M/I$. Thus $k \in M$. It follows that $K \subseteq M \cap (P+I)$. Let $y \in M \cap (P+I)$, thus $y+I \in M/I$. We get that $0 = h(y+I) = hi(y+I) = \pi(y+I)$. That is $y+I \in Ker \ \pi = K/I$. Thus $y \in K$. It follows that $M \cap (P+I) \subseteq K$. Hence $K = M \cap (P+I)$.

(2) \Rightarrow (1). Assume that (2) holds. We want to show that R is a C-ring. Let S be a simple right R-module, I be a right ideal of R. We will show that S is P-R/I-injective. Let $a \in R$, $f: (a+I)R \rightarrow S$ be a nonzero homomorphism and $i: (a+I)R \rightarrow R/I$ be an inclusion map. We have $(a+I)R = \frac{(aR+I)}{I}$. Let $Kerf = \frac{K}{I}$, we get that $\frac{(aR+I)}{K} \cong \frac{(aR+I)}{I} = \frac{(aR+I)}{$

$$h: R/I \to S$$
 by $h(z+I) = f(ar+I)$

 $m \in M$ and for some $r \in R$. Define

Next, we will show that h is well-defined. Let z_1+I , $z_2+I \in \mathbb{R}/I$ and $z_1+I=z_2+I$, thus $(m_1+ar_1+I)=(m_2+ar_2+I)$. We get that $(ar_1-ar_2)+I=(m_2-m_1)+I\in \mathbb{M}/I$. That is $ar_1-ar_2\in \mathbb{M}\cap (aR+I)=K$. So $(ar_1-ar_2)+I\in \mathbb{K}/I=Kerf$. This implies that $f((ar_1-ar_2)+I)=0$. That is $f(ar_1+I)=f(ar_2+I)$. Therefore h is well-defined and it is clear that h is an R-homomorphism. We will show that h = f, let ar+I=(ar+i)+I $\in (aR+I)/I$. We get that h = f f(ar+I)=f(ar+I)=f(ar+I)=f(ar+I). Therefore f(aR+I)=f. Hence f(aR+I)=f injective. It follows that f(aR+I)=f.

- **3.2.3 Theorem.** Let M be a right R-module, N be a cyclic right R-module (N = tR) and $_N M = \{m \in M / r_R(t) \subseteq r_R(m)\}$. Then the following conditions are equivalent:
- (1) M is P-N-injective.
- (2) For each $n = ta \in N$ and each $f \in Hom(nR, M)$, $f(n) \in Ma$.
- (3) For each $n = ta \in N$, $l_M r_R(n) = Ma$.
- (4) For each $n = ta \in N$ and each $m \in M$, $r_R(n) \subseteq r_R(m)$ implies $Sm \subseteq {}_NMa$, where S = End(M).
- (5) For each $n = ta \in N$ and each $b \in R$, $l_M[bR \cap r_R(n)] = l_M(b) + NMa$.

Proof. (1) \Rightarrow (2). Assume that (1) holds. Let $n = ta \in N$ and $f \in Hom(nR,M)$. Since M is P-N-injective, there exists $h: N \rightarrow M$ an R-homomorphism such that hi = f where $i: nR \rightarrow N$ is an inclusion map. Thus f(n) = hi(n) = h(n) = h(ta) = h(t)a and we have $h(t) \in M$. We will show that $h(t) \in N$, i.e., $r_R(t) \subseteq r_R(h(t))$. Let $y \in r_R(t)$, thus ty = 0. We get that h(t)y = h(ty) = h(0) = 0. That is $y \in r_R(h(t))$. Hence $h(t) \in N$. It follows that $f(n) \in N$. As

(2) \Rightarrow (3). Assume that (2) holds. Let $n = ta \in N$ and $y \in {}_{N}Ma$. Then y = ma for some $m \in {}_{N}M$. Thus $r_{R}(t) \subseteq r_{R}(m)$. We want to prove that $y \in l_{M} r_{R}(n)$, i.e., yz = 0 for all $z \in r_{R}(n)$. Let $z \in r_{R}(n)$, thus 0 = nz = taz. That is $az \in r_{R}(t) \subseteq r_{R}(m)$. We get that maz = 0. Consider yz = maz = 0, thus $y \in l_{M} r_{R}(n)$. Therefore ${}_{N}Ma \subseteq l_{M} r_{R}(n)$. Conversely, let $x \in l_{M} r_{R}(n)$. Define

$$f: nR \longrightarrow xR$$
 by $f(nr) = xr$ for all $r \in R$

Thus f is well-defined and an R-homomorphism. Let $i: xR \longrightarrow M$ be an inclusion map and $h = if \in Hom$ (nR, M). By (2), we get that $h(n) \in {}_{N}Ma$. Consider $n \in nR$, we have h(n) = if(n) = f(n) = f(n1) = x1 = x. So $x \in {}_{N}Ma$. Therefore $l_{M} r_{R}(n) \subseteq {}_{N}Ma$.

(3) \Rightarrow (4). Assume that (3) holds. Let $n = ta \in N$, $m \in M$ and $r_R(n) \subseteq r_R(m)$. Then $\{m\} \subseteq l_M r_R(m) \subseteq l_M r_R(n) = {}_N Ma$. So m = m'a for some $m' \in {}_N M$, thus $r_R(t) \subseteq r_R(m')$. Let $x \in Sm$, then x = f(m) for some $f \in S$. We have f(m) = f(m'a) = f(m')a. Next, we will show that $f(m') \in {}_N M$, i.e., $r_R(t) \subseteq r_R(f(m'))$. Let $y \in r_R(t)$, thus $y \in r_R(m')$. That is m'y = 0, we have 0 = f(m'y) = f(m')y. This means that $y \in r_R(f(m'))$. Therefore $f(m') \in {}_N M$. It follows that $x = f(m) \in {}_N Ma$. Hence $Sm \subseteq {}_N Ma$.

(4) \Longrightarrow (1). Assume that (4) holds. Let $n=ta\in N$, $f\in Hom(nR,M)$ and i:nR $\Longrightarrow N$ be an inclusion map. For each $x\in r_R(n)$, we get that nx=0. So f(n)x=f(nx) =f(0)=0. Hence $x\in r_R(f(n))$. That is $r_R(n)\subseteq r_R(f(n))$. By assumption, we get that $S(f(n))\subseteq {}_NMa$. Thus f(n)=ma for some $m\in {}_NM$. Thus $r_R(t)\subseteq r_R(m)$. Define $h:N\Longrightarrow M$ by h(tr)=mr for all $r\in R$

Then h is well-defined and an R-homomorphism. Let $nr \in nR$ for some $r \in R$. We get that hi(nr) = h(nr) = h(tar) = mar = f(n)r = f(nr), so hi = f. Hence M is P-N-injective

that $l_M[bR \cap r_R(n)] = l_M(b) + {}_NMa$. Let $x \in l_M[bR \cap r_R(n)]$, then $xy = \theta$ for all $y \in bR \cap r_R(n)$. For each $r \in r_R(nb)$, nbr = 0. So $br \in bR \cap r_R(n)$ and thus xbr = 0, i.e., $r \in r_R(xb)$. Therefore $r_R(nb) \subseteq r_R(xb)$. This implies that $xb \in {}_NMab$, by (4). Thus xb = mab for some $m \in {}_NM$. We have (x-ma)b = 0, thus $x-ma \in l_M(b)$. So x-ma = z for some $z \in l_M(b)$. Therefore $z = z + ma \in l_M(b) + {}_NMa$. This means that $l_M[bR \cap r_R(n)] \subseteq l_M(b) + {}_NMa$. Conversely, let $z \in l_M(b) + {}_NMa$. Then z = z + ma for some $z \in l_M(b)$, $z \in l_M(b)$. Thus $z \in l_M(b) + {}_NMa$. Thus $z \in l_M(b) + {}_NMa$. Then $z \in l_M(b) + {}_NMa$. Thus $z \in l_M(b) + {}_NMa$. Then $z \in l_M(b) + {}_NMa$. Thus $z \in l_M(b) + {}_NMa$. Then $z \in l_M(b) + {}_NMa$. Thus $z \in l_M(b) + {}_NM$

= tabr. We get that $abr \in r_R(t) \subseteq r_R(m)$. That is mabr = 0. Consider xy = xbr= mabr = 0. This implies that $x \in l_M[bR \cap r_R(n)]$. Thus $l_M(b) + {}_NMa \subseteq l_M[bR \cap r_R(n)]$

 $(5) \Rightarrow (3)$. Assume that

$$l_M[bR \cap r_R(n)] = l_M(b) + {}_NMa$$
 for all $n=ta \in N$, for all $b \in R$. -----(*)

Put $b=1$ in (*), we get that $l_M[R \cap r_R(n)] = l_M(1) + {}_NMa$. Therefore $l_M r_R(n) = {}_NMa$.

By putting N = R in Theorem 3.2.3, we then get $_{N}M = M$. So we have:

- **3.2.4 Corollary.** Let M be a right R-module and S = End(M). Then the following conditions are equivalent:
- (1) M is P-injective.
- (2) For each $a \in R$ and each $f \in Hom(aR, M)$, $f(a) \in Ma$.
- (3) For each $a \in R$, $l_M r_R(a) = Ma$.
- (4) For each $a \in R$ and each $m \in M$, $r_R(a) \subseteq r_R(m)$ implies $Sm \subseteq Ma$
- (5) For each $a, b \in R$, $l_M[bR \cap r_R(a)] = l_M(b) + Ma$.

Since for each simple right R-module S, we have $S \cong \frac{R}{r_R(s)}$ for all $0 \neq s \in S$. Thus $r_R(s)$ is a maximal right ideal of R. Therefore $\mathcal{M} = \{\frac{R}{M}/M \text{ is a maximal right ideal of } R\}$ is a class of representatives of simple right R-modules. For convenience if given a right ideal I of R and a maximal right ideal M of R, we will denote that $_{IM}R = \{x \in R/xI \subseteq M\}$ and $_{IM}\overline{R} = \{x + M \in \frac{R}{M}/xI \subseteq M\}$. Equivalently, $_{IM}R = \{x \in R/r_R(I+I) \subseteq r_R(x)\}$ and $_{IM}\overline{R} = \{x + M \in \frac{R}{M}/xI \subseteq M\}$.

3.2.5 Other characterizations of C-rings.

Let R be a ring. Then the following conditions are equivalent:

- (1) R is a C-ring.
- (2) For each right ideal I of R, each maximal right ideal M of R, each $a \in R$ and each $f \in Hom((a+1)R, \frac{R}{M})$, $f(a+1) \in M$ \overline{R} a.
- (3) For each right ideal I of R, each maximal right ideal M of R and each $a \in R$, $l_{R_{/M}} r_{R}(a+I) = {}_{IM} \overline{R} a.$
- (4) For each right ideal I of R, each maximal right ideal M of R and each $a, b \in R$, $r_R(a+I) \subseteq r_R(b+M) \text{ implies } S(b+M) \subseteq I_M R \text{ a, where } S = End(R/M)$
- (5) For each right ideal I of R, each maximal right ideal M of R and each a, $b \in R$, $l_{R/M} [bR \cap r_R(a+I)] = l_{R/M} (b) + {}_{IM} \overline{R} a.$

Proof. (1) \Rightarrow (2). Assume that R is a C-ring. Let I be a right ideal of R, M be a maximal right ideal of R, $a \in R$ and $f \in Hom((a+I)R, \frac{R}{M})$. Since $\frac{R}{M}$ is simple, by assumption we get $\frac{R}{M}$ is P- $\frac{R}{I}$ -injective. Then there exists $h: \frac{R}{I} \rightarrow \frac{R}{M}$ an R-homomorphism such that hi = f where $i: (a+I)R \rightarrow \frac{R}{I}$ is an inclusion map. Thus f(a+I) = hi(a+I) = h(a+I) = h(I+I) a. Because $h(I+I) \in \frac{R}{M}$, let h(I+I) = z+M for some $z \in R$. We will show that $z+M \in \frac{R}{M}$, i.e., $zI \subseteq M$. For each $x \in I$, we have x+I=0. Thus h(I+I)x = h(x+I) = h(0) = 0, we get that $x \in r_R(h(I+I)) = r_R(z+M)$. Therefore $I \subseteq r_R(z+M)$. Let $y \in zI$, thus y = zw for some $w \in I \subseteq r_R(z+M)$. That is $y \in M$, so $zI \subseteq M$. Hence $z+M \in M$. It follows that f(a+I) = h(I+I) $a \in M$ R.

(2) \Longrightarrow (3). Assume that (2) holds. Let I be a right ideal of R, M be a maximal right ideal of R, $a \in R$ and $x \in {}_{IM}\overline{R}a$. Thus x = (z + M)a for some $z + M \in {}_{IM}\overline{R}$. We get that $zI \subseteq M$. We will show that $x \in l_{R/M}r_R(a+I)$, i.e., xy = 0 for all $y \in r_R(a+I)$. Let $y \in r_R(a+I)$, thus $ay \in I$. We get that $zay \in zI \subseteq M$. Consider

xy = (z+M)ay = zay + M = M. This implies that $x \in l_{R/M} r_R(a+I)$. Therefore $l_M R a$ $\subseteq l_{R/M} r_R(a+I)$. Conversely, let $x \in l_{R/M} r_R(a+I)$. Thus xy = 0 for all $y \in r_R(a+I)$. Define

 $f: (a+I)R \longrightarrow xR$ by f(ar+I) = xr for all $r \in R$

Clearly f is well-defined and an R-homomorphism.Let $i: xR \to R/M$ is an inclusion map and $h = if \in Hom((a+I)R, R/M)$. By (2), we get that $h(a+I) \in IM \overline{R} a$. Consider h(a+I) = if(a+I) = f(a+I) = x, thus $x \in IM \overline{R} a$. Therefore $l_{R/M} r_R(a+I)$. $\subseteq IM \overline{R} a$.

(3) \Rightarrow (4). Assume that (3) holds. Let I be a right ideal of R, M be a maximal right ideal of R, a, $b \in R$ and $r_R(a+I) \subseteq r_R(b+M)$. Then $\{b+M\} \subseteq l_{R/M} r_R(b+M) \subseteq l_{R/M} r_R(a+I) = l_M \overline{R} a$. Hence b+M = (r+M)a for some $r+M \in l_M \overline{R}$, thus $rI \subseteq M$. Let $x \in S(b+M)$, then x = f(b+M) for some $f \in S$. We have f(b+M) = f(r+M)a = f(r+M)a. Since $f(r+M) \in R/M$, let f(r+M) = z+M for some $z \in R$. Next, we will show that $z+M \in l_M \overline{R}$, i.e., $zI \subseteq M$. For each $x \in I$, we have $rx \in rI \subseteq M$. Thus rx+M = 0. Consider f(r+M)x = f(rx+M) = f(0) = 0, we get that $x \in r_R(f(r+M)) = r_R(z+M)$. Therefore $I \subseteq r_R(z+M)$. Let $y \in zI$, thus y = zw for some $w \in I \subseteq r_R(z+M)$. That is $y \in M$, so $zI \subseteq M$. Hence $z+M \in l_M \overline{R}$. It follows that $f(b+M) = f(r+M)a \in l_M \overline{R} a$. Hence $S(b+M) \subseteq l_M \overline{R} a$.

(4) \Longrightarrow (1). Assume that (4) holds. We will show that R is a C-ring. Let S be a simple right R-module and N be a cyclic right R-module. Thus $S \cong R/M$ for some maximal right ideal M of R and $N \cong R/I$ for some right ideal I of R. We show that R/M is P-R/I-injective. Let $a \in R$, $f: (a+I)R \to R/M$ be an R-homomorphism and $i: (a+I)R \to R/I$ be an inclusion map. For each $x \in r_R(a+I)$, we get that ax+I=0. So f(a+I)x=f(ax+I)=f(0)=0. Hence $x \in r_R(f(a+I))$. That

is $r_R(a+I) \subseteq r_R(f(a+I))$. By assumption, we get that $S(f(a+I)) \subseteq IM \overline{R} a$. Thus f(a+I) = (z+M)a for some $z+M \in IM \overline{R}$. We have $zI \subseteq M$. Define

$$h: \frac{R}{I} \to \frac{R}{M}$$
 by $h(r+I) = zr + M$ for all $r \in R$

Then h is well-defined and an R-homomorphism. Let $ar+I \in (a+I)R$ for some $r \in R$. Consider hi(ar+I) = h(ar+I) = zar+M = (z+M)ar = f(a+I)r = f(ar+I), we get that hi = f. Hence R/M is P-R/I-injective. It follows that R is a C-ring.

 $(5)\Longrightarrow(3)$. Assume that

$$l_{R/M}[bR \cap r_R(a+I)] = l_{R/M}(b) + {}_{IM}\overline{R}a.$$
 for all $a, b \in R$. -----(*)

Put
$$b=1$$
 in (*), we get that $l_{R/M} [R \cap r_R(a+I)] = l_{R/M} (1) + {}_{IM} \overline{R} a$. Therefore $l_{R/M} r_R(a+I) = {}_{IM} \overline{R} a$

3.2.6 Example. Z_6 is a C-ring.

Proof. Since $0, <\overline{2}>, <\overline{3}>$ and Z_6 are the only right ideals of Z_6 , $<\overline{2}>$ and $<\overline{3}>$ are maximal. We will show that $l \sum_{Z_6} r_{Z_6}(\overline{a}+I) = r_{Z_6}(\overline{a})$ for

all right ideal I of R, for all maximal right ideal M of R and for all $\overline{a} \in Z_6$. Case $M = \langle \overline{2} \rangle$.

(1). If
$$I = \langle \bar{3} \rangle$$
, we have $\overline{Z_6} = \{ \bar{x} + \langle \bar{2} \rangle \in Z_6 / \bar{x} < \bar{3} \rangle \subseteq \langle \bar{2} \rangle \}$
= $\{\langle \bar{2} \rangle \}$. Thus $\overline{Z_6} (\bar{a}) = \{\langle \bar{2} \rangle \}$ for all $\bar{a} \in Z_6$.

Consider $\bar{a} \in \{\bar{0}, \bar{3}\}$, we have $r_{z}(\bar{a} + \langle \bar{3} \rangle) = \{\bar{x} \in Z_{6} / \bar{ax} \in \langle \bar{3} \rangle\}$

$$= Z_6. \quad \text{Thus } l \qquad r \qquad (\overline{a} + <\overline{3}>) = \{ \ \overline{x} \ + <\overline{2}> \in \ Z_6 / (\overline{a}> / \ \overline{xw} \in <\overline{2}> \text{ for }$$

all
$$\overline{w} \in Z_6$$
 = $\{\langle \overline{z} \rangle\}$.

Consider $\overline{a} \in \{\overline{1}, \overline{2}, \overline{4}, \overline{5}\}$, we have $r_{Z_6}(\overline{a} + \langle \overline{3} \rangle) = \{\overline{x} \in Z_6 / \overline{ax} = Z_6 / \overline{ax} \in Z_6 / \overline{ax} \in Z_6 / \overline{ax} = Z_6 / \overline{ax} \in Z_6 / \overline{ax} = Z_6 / \overline{ax}$

$$\{\overline{3}\} = \{\overline{3}\}. \text{ Thus } l$$

$$r_{Z_{6}/\sqrt{2}} = \{\overline{x} + \{\overline{2}\}\} \in Z_{6}/\sqrt{xw} \in \{\overline{2}\}\}$$

for all $w \in (3>) = ((2>))$.

Therefore
$$l r_{Z_6/\overline{z}>} r_{\overline{a}}(\overline{a}+<\overline{3}>) = \overline{Z_6}(\overline{a})$$
 for all $\overline{a} \in Z_6$.

(2). If
$$I = \langle \overline{z} \rangle$$
, we have $\overline{Z_6} = \{\overline{x} + \langle \overline{z} \rangle \in \overline{Z_6} / \overline{x} \langle \overline{z} \rangle \subseteq \langle \overline{z} \rangle \}$

$$= \overline{Z_6} / \overline{Z_6} (\overline{a}) = \{\langle \overline{z} \rangle \} \text{ when } \overline{a} \in \{\overline{0}, \overline{z}, \overline{4}\} \text{ and}$$

$$\overline{Z_6} (\overline{a}) = \overline{Z_6} / \overline{Z_6} (\overline{a}) = \{\overline{1}, \overline{3}, \overline{5}\}.$$

Consider
$$\overline{a} \in \{\overline{0}, \overline{2}, \overline{4}\}$$
, we have r_{Z} $(\overline{a} + \langle \overline{z} \rangle) = \{\overline{x} \in Z_6 / \overline{ax} \in \langle \overline{z} \rangle\}$ for all $\overline{w} \in Z_6\} = \{\langle \overline{z} \rangle\}$.

Consider $\overline{a} \in \{\overline{1}, \overline{3}, \overline{5}\}$, we have r_{Z} $(\overline{a} + \langle \overline{z} \rangle) = \{\overline{x} \in Z_6 / \overline{ax} \in \langle \overline{z} \rangle\}$ for all $\overline{w} \in Z_6\} = \{\langle \overline{z} \rangle\}$.

Consider $\overline{a} \in \{\overline{1}, \overline{3}, \overline{5}\}$, we have r_{Z} $(\overline{a} + \langle \overline{z} \rangle) = \{\overline{x} \in Z_6 / \overline{ax} \in \langle \overline{z} \rangle\}$ for all $\overline{w} \in \langle \overline{z} \rangle\} = \overline{z}$ for all $\overline{w} \in \langle \overline{z} \rangle\} = \overline{z}$ for all $\overline{w} \in \langle \overline{z} \rangle\} = \overline{z}$ for all $\overline{w} \in \langle \overline{z} \rangle\} = \overline{z}$ for all $\overline{a} \in Z_6$.

(3). If $\overline{I} = Z_6$, we have $\overline{z}_4 \in \overline{z} = \overline{z}$ for all $\overline{a} \in Z_6$. For each $\overline{a} \in Z_6$, r_{Z} $(\overline{a} + Z_6) = \overline{z}$ for all $\overline{a} \in Z_6$.

So \overline{I} for \overline{z} $(\overline{a} + Z_6) = \{\overline{x} + \langle \overline{z} \rangle\} \in \overline{z}$ for all $\overline{a} \in Z_6$.

(4). If $\overline{I} = 0$, we have $\overline{z}_6 = \overline{z}$ when $\overline{a} \in \{\overline{z}, \overline{z}, \overline{z}\}$ for all $\overline{w} \in Z_6$.

Consider $\overline{a} = \overline{0}$, we have $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$. So $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$.

Consider $\overline{a} = \overline{0}$, we have $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$. So $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$.

Consider $\overline{a} = \overline{0}$, we have $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$. So $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$.

Consider $\overline{a} = \overline{0}$, we have $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$. So $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{z}_{Z_6} = \overline{z}$ for all $\overline{w} \in Z_6$.

Thus
$$l$$
 $r_{Z_6/\overline{z}}$ $r_{Z_6/\overline{z}}$

Consider $\overline{a} \in \{\overline{2}, \overline{4}\}$, we have $r_{Z_6}(\overline{a}) = \{\overline{x} \in Z_6 \mid \overline{ax} = 0\} = \langle \overline{3} \rangle$.

Thus
$$l_{Z_{\frac{6}{2}}} r_{Z_{\frac{6}{6}}} (\bar{a}) = \{\bar{x} + \langle \bar{z} \rangle \in Z_{\frac{6}{2}} / \bar{xw} \in \langle \bar{z} \rangle \text{ for all } \bar{w} \in \langle \bar{3} \rangle \}$$

= $\{\langle \bar{z} \rangle\}.$

Consider $\overline{a} \in \{\overline{1}, \overline{5}\}$, we have $r_{Z_6}(\overline{a}) = \{\overline{x} \in Z_6 \mid \overline{ax} = 0\} = 0$. Thus $1 \qquad r_{Z_6}(\overline{a}) = \frac{Z_6}{\langle \overline{2} \rangle}.$

Therefore
$$l r_{Z_6}(\bar{a}) = \overline{Z_6}(\bar{a})$$
 for all $\bar{a} \in Z_6$.

For $M = \langle \overline{3} \rangle$, we can prove in the same way. Hence Z_6 is a C-ring.

- **3.2.7 Lemma.** Let E be a right R-module and E be P-N-injective for all cyclic right R-modules N. Then the following conditions are equivalent:
- (1) E cogenerates every cyclic right R-module.
- (2) Hom $(T, E) \neq 0$ for all simple right R-modules T.
- (3) E cogenerates every simple right R-module.
- **Proof.** (1) \Longrightarrow (3). Let S be a simple right R-module, thus S is cyclic. By assumption, we have E cogenerates S.
- (3) \Rightarrow (2). Assume that E cogenerates every simple right R-module. Let T be a simple right R-module. By assumption, E cogenerates T. Thus $Rej_T(E) = 0$. We want to show that $Hom(T, E) \neq 0$. Suppose that Hom(T, E) = 0. For each $h \in Hom(T, E)$, we have h is a zero homomorphism. Therefore Ker h = T. That

is $0 = Rej_T(E) = \bigcap \{Ker \ h / h \in Hom \ (T, E)\} = T$ which is a contradiction. Hence $Hom \ (T, E) \neq 0$.

cyclic right R-module. Let N be a cyclic right R-module and $0 \neq n \in N$. We have nR has a maximal submodule. Let L be a maximal submodule of nR. Thus nR/L is simple. By assumption, there exists $0 \neq f \in Hom(nR/L, E)$. Let $\eta: nR \to nR/L$ be a natural homomorphism. We get that $f\eta$ is a nonzero homomorphism. Since E is P-N-injective, there exists $h \in Hom(N, E)$ such that $hi = f\eta$ where $i: nR \to N$ is an inclusion map. Consider $h(n) = hi(n) = f\eta(n) \neq 0$. This implies that h is one-to-one. Thus Ker h = 0. We get that $Rej_N(E) = \bigcap \{Ker h/h \in Hom(N, E)\}$ = 0. Therefore E cogenerates every cyclic right R-module.

3.2.8 Theorem. The following conditions are equivalent for a ring R:

- (1) Each simple right R-module is injective.
- (2) Each simple right R-module is P-M-injective for all right R-modules M.
- (3) Each simple right R-module is P-N-injective for all cyclic right R-modules N.
- (4) The radical of N, Rad N = 0 for all cyclic right R-modules N.
- (5) Each right ideal is an intersection of maximal right ideals.

Proof. (1) \Rightarrow (2) Assume that (1) holds. Let S be a simple right R-module and M be a right R-module. We will show that S is P-M-injective. Let $m \in M$, $f: mR \to S$ be an R-homomorphism and $i: mR \to M$ be an inclusion map. Since S is injective, thus there exists $h: M \to S$ an R-homomorphism such that hi = f. Hence S is P-M-injective.

(2) \Rightarrow (3) Let S be a simple right R-module and N be a cyclic right R-module. By assumption, we have S is P-N-injective.

- (3) \Rightarrow (4) Assume that (3) holds. Let N be a cyclic right R-module. We want to show that $\operatorname{Rad} N = 0$. Let $\{S_i \mid i \in I\}$ be a set of representatives of distinct isomorphism classes of simple right R-modules. Let S be a simple right R-module. We have $S \cong S_j$ for some $j \in I$. Let $f: S \longrightarrow S_j$ be an R-isomorphism and $\eta_j: S_j \longrightarrow \prod_{i \in I} S_i$ be an injection map. We get that $\eta_j f: S \longrightarrow \prod_{i \in I} S_i$ is one-to-one. Therefore $\prod_{i \in I} S_i$ cogenerates every simple right R-module. Since S_i is simple for all $i \in I$ and by assumption, S_i is P-N-injective for all $i \in I$. We have $\prod_{i \in I} S_i$ is P-N-injective. We get that $\prod_{i \in I} S_i$ cogenerates every cyclic right R-module, by Lemma 3.2.7. Thus $\prod_{i \in I} S_i$ cogenerates N. Then there exists $0 \longrightarrow N \longrightarrow (\prod_{i \in I} S_i)^{\Lambda}$ a monomorphism for some index set Λ . This implies that N is cogenerated by the class of simple R-modules. Hence $\operatorname{Rad} N = 0$.
- (4) \Rightarrow (5) Assume that (4) holds. Let I be a right ideal of R, thus R/I is cyclic. By assumption, we have $\{I\} = \operatorname{Rad}(R/I) = \bigcap \{M/I \subset R/I \mid M/I \text{ is maximal in } R/I \}$. We want to prove that $\bigcap \{M \mid I \subseteq M \text{ is maximal in } R \} = \{I\}$. Let $x \in \bigcap \{M \mid I \subseteq M \text{ is maximal in } R \}$, then $x \in M$ for all maximal right ideals M containing I of R. Thus for each maximal right ideal M containing I of R, $x+I \in M/I$. Therefore $x+I \in \bigcap \{M/I \subset R/I \mid M/I \text{ is maximal in } R/I \} = \{I\}$. We have $x \in I$. Hence $\bigcap \{M \mid I \subseteq M \text{ is maximal in } R \} \subseteq \{I\}$. It follows that $\bigcap \{M \mid I \subseteq M \text{ is maximal in } R \} = \{I\}$.
- $(5) \Rightarrow (1)$ Assume that (5) holds. Let S be a simple right R-module. We will show that S is injective. Let I be a right ideal of R, $f: I \rightarrow S$ be a nonzero R-homomorphism and $t: I \rightarrow R$ be an inclusion map. Thus $I/K_{erf} \cong Imf = S$. Then there exists $x \in I \setminus Kerf$ such that $Kerf \subseteq Kerf + xR$. Since $Kerf \subseteq Kerf + xR$ $\subseteq I$ and Kerf is maximal, we have Kerf + xR = I. Because Kerf is a right

ideal of R and by assumption, we have $Kerf = \bigcap_{i \in \Lambda} M_i$ where M_i is maximal for all $i \in \Lambda$. If $I \subseteq M_i$ for all $i \in \Lambda$, then $I \subseteq \bigcap_{i \in \Lambda} M_i = Kerf$ which is a contradiction. Thus there exists $j \in \Lambda$ such that $I \not\subset M_j$. Because $M_j \subset M_j + I \subseteq R$ and M_j is maximal, $M_j + I = R$. Consider $M_j \cap I = M_j \cap (Kerf + xR) = Kerf + (M_j \cap xR)$. Since $Kerf + (M_j \cap xR) \subseteq I$, $(Kerf + (M_j \cap xR)) / (Kerf \subseteq I/Kerf$. Because I/Kerf is simple, we get that $Kerf + (M_j \cap xR) = Kerf$ or $Kerf + (M_j \cap xR) = I$. If $Kerf + (M_j \cap xR) = I$, then $M_j \cap I = Kerf + (M_j \cap xR) = I$. This implies that $I \subseteq M_j$ which is a contradiction. Thus $Kerf + (M_j \cap xR) = Kerf$. We get that $M_j \cap I = Kerf$. Define

 $h: M_j + I \longrightarrow S$ by $h(m_j + i) = f(i)$ for all $m_j + i \in M_j + I$ Next, we will show that h is well-defined. Let $m_j + i$, $m'_j + i' \in M_j + I$ and $m_j + i$ $= m'_j + i'$, thus $i' - i = m_j - m'_j \in M_j$. We have $i' - i \in M_j \cap I = Ker f$. That is 0 = f(i' - i) = f(i') - f(i). Therefore h is well-defined and an R-homomorphism. Let $x \in I$, thus hi(x) = h(x) = h(0 + x) = f(x). Hence hi = f. It follows that S is injective.

Definition. Let R be a ring. R is a right V-ring if every simple right R-module is injective.

By the definition of V-rings and Theorem 3.2.8, we can conclude that V-ring and C-ring are the same ring. Thus we have :

3.2.9 Theorem. The following conditions are equivalent for a ring R:

(1) R is a C-ring.

- (2) For each right ideal I of R, each maximal right ideal M of R, each $a \in R$ and each $f \in Hom((a+1)R, \frac{R}{M})$, $f(a+1) \in \overline{\mathbb{R}} \overline{R} a$.
- (3) For each right ideal I of R, each maximal right ideal M of R and each $a \in R$, $l_{R_M} r_R(a+1) = {}_{IM} \overline{R} a.$
- (4) For each right ideal I of R, each maximal right ideal M of R and each a, $b \in R$, $r_R(a+I) \subseteq r_R(b+M)$ implies $S(b+M) \subseteq {}_{IM}\overline{R}a$, where $S = End(\frac{R}{M})$
- (5) For each right ideal I of R, each maximal right ideal M of R and each a, $b \in R$, $l_{R_M} [bR \cap r_R(a+1)] = l_{R_M} (b) + {}_{IM} \overline{R} a.$
- (6) R is a V-ring.
- (7) Each simple right R-module is injective.
- (8) Each simple right R-module is P-M-injective for all right R-modules M.
- (9) Each simple right R-module is P-N-injective for all cyclic right R-modules N.
- (10) The radical of N, Rad N = 0 for all cyclic right R-modules N.
- (11) Each right ideal is an intersection of maximal right ideals.

Proof. (1) - (5) are equivalent by Theorem 3.2.5, (6) - (11) are equivalent by Theorem 3.2.8 and it is clear that $(1) \Leftrightarrow (6)$.

3. Cyclically Injective Rings, P-V-Rings and Regular Rings

Definition. Let R be a ring. R is a right P-V-ring if every simple right R-module is P-injective.

3.3.1 Example. [[5], 2.3.6 Example]

The endomorphism ring of a countable infinite dimentional left vector space is a P-V-ring but not a C-ring.

Proof. (For this example, we will write (a)f instead of f(a) where $f \in Hom_F(A, B)$ and $a \in A$.) Before we prove this example, we will give the following remark. For two vector spaces V, W and a linear map $f: V \longrightarrow W$ we get from the basis extension theorem

- (1). If f is a monomorphism, then there is a homomorphism $h: W \longrightarrow V$ with $fh = I_V$.
- (2). If f is an epimorphism, then there is a homomorphism $k: W \longrightarrow V$ with $kf = I_W$.

Let V be a countable infinite dimentional left vector space over a field F with a basis $\{v_n\}_{n\in\mathbb{N}}$ and $S=End(_FV)$. We will show that S is a regular ring. Let $f\in S$, $\overline{V} = V/Kerf$ and $\eta: V \rightarrow \overline{V}$ be a natural homomorphism. Since $Ker \eta = Kerf$, by Factor Theorem, there exists $g: \overline{V} \longrightarrow V$ a monomorphism such that $\eta g = f$. Since η is an epimorphism and both \overline{V} and V are vector spaces, there exists $\overline{\eta}:\overline{V}$ \rightarrow V an R-homomorphism such that $\overline{\eta} \eta = 1_{\overline{\nu}}$. Since g is a monomorphism and both \overline{V} and V are vector spaces, there exists $\overline{g}:V\longrightarrow \overline{V}$ such that $g\overline{g}=1_{\overline{V}}$. Consider $f = \eta g = \eta 1_{\overline{\nu}} g = \eta \overline{\eta} \eta g = \eta \overline{\eta} f = \eta 1_{\overline{\nu}} \overline{\eta} f = \eta g \overline{g} \overline{\eta} f = f \overline{g} \overline{\eta} f$ with $g \eta \in S$. Therefore S is a regular ring. Hence S is a P-V-ring. Moreover, we have V is a right S-module. Next, we will show that V_S is simple, i.e., u_1S = V for all $0 \neq u_1 \in V$. Let $0 \neq u_1 \in V$, thus $u_1 = \sum_{k \in N} r_k v_k$ for some $r_k \in F$. We get that $u_1S \subseteq V$. We will show that $\{u_1\}$ is linearly independent. Let $r \in F$ and $ru_1 = 0$, thus $\sum_{k \in N} (rr_k)v_k = r(\sum_{k \in N} r_k v_k) = 0$. We have $rr_k = 0$ for all $k \in N$. If $r_k = 0$ for all $k \in N$, then $u_1 = \sum_{k \in N} r_k v_k = 0$ which is a contradiction. Thus r = 0. This implies that $\{u_i\}$ is linearly independent. Then we have $\{u_i\}$ can be extended to a basis of $_FV$. Let $\{u_1, u_2, u_3,\}$ be a basis of $_FV$. We want to show that $V \subseteq u_1 S$. Let $v \in V$. Define

$$h:V\longrightarrow V \text{ by } (u_l)h=v \text{ , } (u_i)h=0 \text{ for all } i\in N\backslash\{l\} \text{ and } (\sum_{k\in N}r_ku_k)\,h=\sum_{k\in N}r_k((u_k)h)$$

Let $\sum_{k\in N} r_k u_k \in V$ and $\sum_{k\in N} r_k u_k = 0$, thus $r_k = 0$ for all $k\in N$. We get that $(\sum_{k\in N} r_k u_k) h = \sum_{k\in N} r_k ((u_k)h) = 0$. Therefore h is well-defined and an F-homo morphism. Moreover, we have $h\in S$ and $(u_1)h = v$. We get that $V\subseteq u_1S$. So $V=u_1S$. This implies that V_S is simple. Let $I=\{f\in S/(v_k)f\neq 0 \text{ for only finitely many } k\in N\}$. We have I is an ideal of S. We want to show that S is not a C-ring. Suppose that S is a C-ring. Define

$$g: I \longrightarrow V_S$$
 by $g(f) = \sum_{k \in N} (v_k) f$ for all $f \in I$

Therefore g is well-defined and an S-homomorphism. Since V is simple and S is a C-ring, there exists $g^*:S \longrightarrow V$ an S-homomorphism such that $i g^* = g$ where $i:I \longrightarrow S$ is an inclusion map. Since $I_V \subseteq S$, let $g^*I_V = \sum_{k \in N} r_k v_k$ for some $r_k \subseteq F$. For each $f \subseteq I$, we have $\sum_{k \in N} (v_k)f = g(f) = i g^*(f) = g^*(f) = g^*(I_V f) = (g^*I_V)f$ $= (\sum_{k \in N} r_k v_k)f = \sum_{k \in N} r_k ((v_k)f)$. Let $k \in N$. Define $f^*: V \longrightarrow V$ by $(v_k)f^* = v_k$, $(v_j)f^* = 0$ for all $j \in N \setminus k$ and $(\sum_{k \in N} r_k v_k)f^* = \sum_{k \in N} r_k ((v_k)f^*)$

Therefore f^* is well-defined and an F-homomorphism. Moreover, we have $f^* \in I$. Thus $v_k = \sum_{k \in N} (v_k) f^* = \sum_{k \in N} r_k ((v_k) f^*) = r_k v_k$. We get that $(r_k - I) v_k = 0$, so $r_k = I$. This implies that $r_k = I$ for all $k \in N$ which is a contradiction. Hence S is not a C-ring.

Definition. Let R be a ring, R is a right duo ring if every right ideal of R is a left ideal of R.

Recall that for a right ideal I of R and a maximal right ideal M of R, ${}_{IM}R = \{x / xI \subseteq M\}$

3.3.2 Proposition. If R is a right duo ring, then $_{IM}R = M$ or $_{IM}R = R$.

Proof. Let R be a right duo ring and ${}_{IM}R \neq M$. Then there exists $x \in {}_{IM}R \setminus M$. Therefore $xI \subseteq M$. We get that $xa \in M$ for all $a \in I$. Since M is maximal and $x \notin M$, xR + M = R. Thus xr + m = 1 for some $r \in R$, $m \in M$. We have $a = x(ra) + ma \in M$ for all $a \in I$, since R is right duo. This implies that $I \subseteq M$. Next, we will show that ${}_{IM}R = R$. Let $y \in R$, thus $ya \in I \subseteq M$ for all $a \in I$. Therefore $y \in {}_{IM}R$. Hence ${}_{IM}R = R$.

From above Proposition, we have $\overline{R} = 0$ or $\overline{R} = R_M$.

3.3.3 Lemma. The following conditions are equivalent for a ring R:

- (1) R is a P-V-ring.
- (2) For each maximal right ideal M of R, each $a \in R$ and each $f \in Hom(aR, \frac{R}{M})$, $f(a) \in (\frac{R}{M})a$.
- (3) For each maximal right ideal M of R and each $a \in R$, $l_{R/M} r_R(a) = (R/M)a$.
- (4) For each maximal right ideal M of R and each $a, b \in R$, $r_R(a) \subseteq r_R(b+M)$ implies $S(b+M) \subseteq (R/M)a$, where S = End(R/M).
- (5) For each maximal right ideal M of R and each a, $b \in R$, $l_{R/M}[bR \cap r_R(a)] = l_{R/M}(b) + (R/M)a$.

- **3.3.4 Theorem.** The following conditions are equivalent for a right duo ring R:
- (1) R is a C-ring.
- (2) For each maximal right ideal M of R, each $a \in R$ and each $f \in Hom(aR, \frac{R}{M})$, $f(a) \in (\frac{R}{M})a$.
- (3) For each maximal right ideal M of R and each $a \in R$, $l_{R_M} r_R(a) = (R_M)a$.
- (4) For each maximal right ideal M of R and each $a, b \in R$, $r_R(a) \subseteq r_R(b+M)$ implies $S(b+M) \subseteq \binom{R}{M}$ a, where $S = End(\binom{R}{M})$.
- (5) For each maximal right ideal M of R and each $a, b \in R$, $l_{R/M}[bR \cap r_R(a)] = l_{R/M}(b) + (R/M)a$.
- (6) R is a P-V-ring.

Proof. (2) - (6) are equivalent by Lemma 3.3.3. Since every C-ring is a P-V-ring, (1) implies (6). Thus we only prove (4) \Rightarrow (1).

(4) \Rightarrow (1). Assume that (4) holds. We want to show that R is a C-ring. Let S be a simple right R-module and N be a cyclic right R-module. Thus $S \cong R_M$ for some maximal right ideal M of R and $N \cong R_I$ for some right ideal I of R. We will show that R_M is P- R_I -injective. Let $a \in R$, $f: (a+I)R \to R_M$ be a nonzero R-homomorphism and $i: (a+I)R \to R_I$ be an inclusion map. For each $x \in r_R(a)$, we get that ax = 0. That is ax + I = I. So f(a+I)x = f(ax+I) = f(0) = 0. Hence $x \in r_R(f(a+I))$. That is $r_R(a) \subseteq r_R(f(a+I))$. By assumption, we get that $S(f(a+I)) \subseteq (R_M)a$. Thus f(a+I) = (z+M)a for some $z+M \in R_M$. Define $h: R_I \to R_M$ by h(r+I) = zr+M for all $r \in R$.

Next, we will show that h is well-defined. Let $r+I \in \mathbb{R}/I$ and r+I=I, thus $r \in I$. We get that $zr \in I$. Consider $f(a+I) \in \mathbb{R}/I$, we show that $f(a+I) \in \mathbb{R}/I$, i.e.,

 $r_R(I+I) \subseteq r_R(f(a+I))$. Let $y \in r_R(I+I)$, thus $y \in I$. Since R is a right duoring, $ay \in I$. Thus f(a+I)y = 0. So $y \in r_R(f(a+I))$. Since f(a+I) is nonzero, by Proposition 3.3.2 we have $f(a+I) \in {}_{I\!M} \overline{R} = {}^R\!/_{M}$. It follows that ${}_{I\!M} R = R$. We have $bI \subseteq M$ for all $b \in R$. Hence $zr \in M$. Then h is well-defined and an R-homomorphism. Let $ar + I \in (a+I)R$ for some $r \in R$. Consider hi(ar+I) = h(ar+I) = zar+M = (z+M)ar = f(a+I)r = f(ar+I), we get that hi = f. Hence $R/_{M}$ is $P-R/_{I}$ -injective. It follows that R is a C-ring.

In general not every P-V-ring is a V-ring, as example 3.3.1 shows. But for a right duo ring, R is a V-ring if and only if R is a P-V-ring.

Definition. An element a of the ring R is called a (von Neumann) regular element if there is $b \in R$ with aba = a. A ring R is called (von Neumann) regular if every element in R is regular.

For V-ring and regular ring we have:

3.3.5 Theorem. [[2], Theorem 4.8].

Let R be a right duo ring. Then R is a V-ring if and only if R is a regular ring.

By Theorem 3.2.9, 3.3.4 and 3.3.5 we get:

- **3.3.6 Theorem.** The following conditions are equivalent for a right duo ring R:
- (1) R is a V-ring;
- (2) R is a P-V-ring;
- (3) R is a regular ring.

We now give another characterization of a regular ring when it is right duo.

At first we need the following lemma.

Let M be a right R-module and N = tR be a cyclic right R-module. Assume that M is P-injective. Then for each $n = ta \in N$ and for each $f: nR \longrightarrow M$ an R-homomorphism there exists $g: aR \longrightarrow nR$ defined by $ar \mapsto nr$ an R-homomorphism. Let $h_{(n,f,a)} = fg$. Since M is P-injective, there exists $h^*: R \longrightarrow M$ be an R-homomorphism such that $h^*i = h_{(n,f,a)} = fg$.

Therefore we will denote

 $Hom(R, M)_N = \{ h^* \in Hom(R, M) / h^* \text{ is an extension of } h_{(n,f,a)} \text{ for some } n \in \mathbb{N}, f \in Hom(nR, M) \text{ and } a \in \mathbb{R} \}$

Thus for each $h^* \in Hom(R, M)_N$, there is an $a \in R$ which corresponds to this h^* and we will denote it by a^* .

- **3.3.7 Lemma.** Let M be a right R-module. Then the following conditions are equivalent:
- (1) M is P-injective.
- (2) M is P-N-injective for all cyclic right R-modules N = tR with $h^*(1)a^* \in {}_{N}Ma^*$ for all $h^* \in Hom(R, M)_{N}$.

- (3) M is P-N-injective for all cyclic right R-modules N = tR with $r_R(t) \subseteq r_R(h^*(I))$ for all $h^* \in Hom(R, M)_N$
- (4) M is P-N-injective for all cyclic right R-modules N = tR with $r_R(t) \subseteq \bigcap P$ where P is a nonzero principal right ideal of R.

Proof. (1) \Rightarrow (2) Assume that (1) holds. Let N = tR be a cyclic right R-module with $h^*(1)a^* \in {}_N M a^*$ for all $h^* \in Hom(R, M)_N$. We want to prove that M is P-N-injective. Let $n = ta \in N$, $f: nR \longrightarrow M$ be an R-homomorphism and $i: nR \longrightarrow N$ be an inclusion map. Define

$$g: aR \rightarrow nR$$
 by $g(ar) = nr = tar$ for all $r \in R$

clearly g is well-defined and an R-homomorphism. Putting $h_{(n,f,a)} = fg : aR \longrightarrow M$ and let $i': aR \longrightarrow R$ be an inclusion map. Since M is P-injective, there exists $h^*: R \longrightarrow M$ be an R-homomorphism such that $h^*i' = h_{(n,f,a)}$. Consider $h^*(a) = h^*(1)a \in {}_N Ma$. Let $h^*(a) = ma$ for some $m \in {}_N M$, thus $r_R(t) \subseteq r_R(m)$. Define

$$f^*: N \longrightarrow M$$
 by $f^*(tr) = mr$ for all $r \in R$

Let $x \in R$ and tx = 0. Then $x \in r_R(t) \subseteq r_R(m)$. We get that mr = 0. Hence f^* is well-defined and it is clear that f^* is an R-homomorphism. Next, we will show that $f^*i = f$. Let $nr \in nR$. Then $f^*i(nr) = f^*(nr) = f^*(tar) = mar = h^*(a)r = h^*i'(ar) = h_{(n,f,a)}(ar) = fg(ar) = f(nr)$. It follows that M is P-N-injective.

- (2) \Rightarrow (3) Assume that (2) holds. Let N = tR be a cyclic right R-module with $r_R(t) \subseteq r_R(h^*(1))$ for all $h^* \in Hom(R, M)_N$. Since $r_R(t) \subseteq r_R(h^*(1))$, $h^*(1) \in {}_N M$. Therefore $h^*(1)a^* \in {}_N Ma^*$. By assumption, we have M is P-N-injective.
- (3) \Rightarrow (4) Assume that (3) holds. Let N = tR be a cyclic right R-module with $r_R(t) \subseteq \bigcap P$ where P is a nonzero principal right ideal of R. We want to show that $r_R(t) \subseteq r_R(h^*(1))$ for all $h^* \in Hom(R, M)_N$. Let $h^* \in Hom(R, M)_N$, thus h^* is an extension of $h_{(n,f,a)}$ for some $n \in N$, $f \in Hom(nR, M)$ and $a \in R$. We have

 $h_{(n,f,a)}(r_R(t)) = fg(r_R(t)) = f(t(r_R(t))) = f(0) = 0$ where $g: aR \longrightarrow nR$ is an R-homomorphism defined by g(ar) = nr. That is $r_R(t) \subseteq Ker \, h_{(n,f,a)}$. Consider $x \in Ker \, h^*$ iff $h^*(x) = 0$ iff $x \in r_R(h^*(1))$. This implies that $Ker \, h^* = r_R(h^*(1))$. Since h^* is an extension of $h_{(n,f,a)}$, $Ker \, h_{(n,f,a)} \subseteq Ker \, h^*$. We get that $r_R(t) \subseteq r_R(h^*(1))$. By (3), we have M is P-N-injective.

(4) \Rightarrow (1) Assume that (4) holds. Putting N = R. Since R = IR, $0 = r_R(1)$ $\subseteq \bigcap P$ where P is a nonzero principal right ideal of R. By assumption, we have M is P-injective.

3.3.8 Corollary. Let R be a regular and right duo ring. Then every right R-module is P-N-injective for all cyclic right R-modules N.

Proof. (\Rightarrow) Let M be a right R-module and N = tR be a cyclic right R-module. We want to show that M is P-N-injective. Let $h^* \in Hom(R, M)_N$, thus h^* is an extension of $h_{(n,f,a)}$ for some $n \in N$, $f \in Hom(nR, M)$ and $a \in R$. We get that $h^*(I)a = h^*(a) = h^*i'(a) = fg(a) = f(n)$ where $g: aR \longrightarrow nR$ is an R-homomorphism defined by g(ar) = nr and $i': aR \longrightarrow R$ is an inclusion map. Since R is a regular ring, a = axa for some $x \in R$. Consider $h^*(I)a = h^*(I)axa = f(n)xa = f(nx)a$. Next, we will show that $r_R(t) \subseteq r_R(f(nx))$. Let $y \in r_R(t)$. Since R is a right duo ring, $axy \in r_R(t)$. Thus axy = taxy = 0. We have axy = taxy = 0. Therefore axy = taxy = tax

Definition. Let K and N be right R-modules. K is an N-cyclic submodule of N if K is a submodule of N and $K \cong N/L$ for some submodule L of N.

Definition. Let M and N be right R-modules. M is semi-N-injective if every R-homomorphism $f: K \longrightarrow M$, K an N-cyclic submodule of N, extends to N.

3.3.9 Proposition. Let M be a right R-module. If M is P-N-injective for all cyclic right R-modules N, then it is semi-N-injective for all cyclic right R-modules N.

Proof. Assume that M is P-N-injective for all cyclic right R-modules N. Let A be a cyclic right R-module. By assumption, we have M is P-A-injective. We want to prove that M is semi-A-injective. Let K be an A-cyclic submodule of A, $f: K \longrightarrow M$ be an R-homomorphism and $i: K \longrightarrow A$ be an inclusion map. Therefore $K \subset A$ and $K \cong A$ for some $L \subset A$. We get that K is cyclic. Since M is P-A-injective, there exists $h: A \longrightarrow M$ an R-homomorphism such that hi = f. Hence M is semi-A-injective.

- 3.3.10 Proposition. The following conditions are equivalent for a right duo ring R:
- (1) R is regular;
- (2) Every right R-module is P-N-injective for all cyclic right R-modules N;
- (3) Every right R-module is semi-N-injective for all cyclic right R-modules N;
- (4) Every right R-module is P-injective;
- (5) R is a V-ring;
- (6) R is a P-V-ring.

Proof. (1) \Rightarrow (2) is Corollary 3.3.8, (2) \Rightarrow (3) is Proposition 3.3.9, (4) \Rightarrow (1) see [4] page 18 and (1) \Leftrightarrow (5) \Leftrightarrow (6) is Theorem 3.3.6. Thus we only prove (3) \Rightarrow (4).

 $(3) \Longrightarrow (4)$. Let M be a right R-module. By (3), we have M is semi-R-

injective. We want to show that M is P-injective. Let $0 \neq a \in R$, $f: aR \longrightarrow M$ be an R-homomorphism and $i: aR \longrightarrow R$ be an inclusion map. Since $aR \cong \frac{R}{r_R(a)}$, we get that aR is an R-cyclic submodule of R. Because M is semi-R-injective, there exists $h: R \longrightarrow M$ an R-homomorphism such that hi = f. Hence M is P-injective. \square