CHAPTER 1III
CYCLICALLY INJECTIVE RINGS

In this chapter, we will study principally N-injective modules, cyclically

injective rings and their applications to V-rings, P-V-rings and regular rings.

1. Principally N-Injective Modules
Definition. Let R be a ring, M and N be right R-modules. M is called
principally N-injective (P-N-injective) if every R-homomorphism f: nR—> M, n€
N, extends to N. Incase M is principally R-injective, we call M a principally

injective (P-injective) module.

3.1.1 Examples.

(1). Every injective module is P-N-injective for all right R-modules N.

(2). If every cyclic submodule of M is a direct summand of M, then M is P-M-
injective.

(3). O, is P-nZ-injective where n positive integer.

(4). IfR is a regular ring, then every right R-module is P-injective.

~ 3.1.2 Some properties of principally N-injective modules.
Let Rbe a ring. Then we have :
(1) If M, is P-N-injective and A ;= M, , then A is P-N-injective.
(2) If M is P-N-injective and Ay = N,, then My is P-A-injective.
(3) My is P-N-injective if and only if M, is P-A-injective for all submodules A of N.
(4) If M, is P-N-injective and every cyclic submodule of N, is projective, then MyK
is P-N-injective for all submodules K of M.



Proof. (1). Let M, be P-N-injective and 4, = M, .We will show that 4, is
P-N-injective. Let n€ N, f: nR —> A be an R- homomorphism and i : ’R —> N
be an inclusion map. Since 4, = M,,, there exists g - 4 —> M an R- isomorphism.
Because M), is P-N-injective , so there exists # : N —> M an R- homomorphism such
that ki = gf. Let f = g 'h. We get that 7 = g'jhi = g''gf = f This means that Ay is
P-N-injective.

(2). Let M, be P-N-injective and A, = N,. We will show that A, is P-4-
injective. Let a € 4, f: aR —> M be an R- homomorphism and i : aR —> A4 be an.
inclusion map. Since 4, = N, there exists g : N —> 4 an R- isomorphism. Because
ac 4, sogm) =aforsomenE N Let g= glnR andi’: nR —* N be an inclusion
map. We get that gi/= i _g- Since M, is P-N-injective, there exists & : N—> M an
R- homomorphism such that #i /= I § Let f = hg'l. We get that [ " E = hg'li §
= hg'jgi "= pi'= f g. Because g is onto , so f i = J . This means that M, is P-4-
injective.

(3). (=) Let M,be P-N-injective and A be a submodule of N. We will show
that M, is P-A-injective. Let a&€ 4, f: aR —> M be an R-homomorphism and
i:aR —> A bean inclusion map. Since 4 C_ N, aR is a cyclic submodule of N.
Let i+ A —> N be an inclusion map. Because M, is P-N-injective , so there exists
h: N—> M an R- homomorphism such that Ai G = S Tt follows that M, is P-A-
injective.

(¢<=) Assume that M, is P-A-injective for all submodules 4 of N. Because
N N, by assumption we get that M, is P-N-injective.

(4). Assume that M, is P-N-injective and every cyclic submodule of N is
projective. Let n€ N, f:nR—> M%{ be an R- homomorphism andi: nR —>N

be an inclusion map. We have 7 : M —)MA(. is anatural homomorphism. By



assumption, we get that aR is projective. Then there exists g : nR —> M an R-
homomorphism such that 7g = £ Because M, is P-N-injective, there exists 2 : N —>
M an R-homomorphism such that zi = g. Let f S nh. Hence we get that f i = nhi =
ng = f. Therefore MA{ is P-N-injective. ]

3.1.3 Direct product and direct sum of principally V-injective modules.

(1) If M, is P-N-injective and A, is a direct summand of M, , then A is P-N-
injective.

(2) A product EM is P-N-injective if and only if each M, is P-N-injective.

(3) Asum g M, is P-N-injective if and only if each M, is P-N-injective.

Proof. (1). Let M, be P-N-injective and 4 be a direct summand of M.
Then M =A@ K for some submodule X of M. We will show that 4 is P-N-
injective. Let n € N, f: nR —> A be an R- homomorphism andi:nR —> N be an
inclusion map. We have 7, : 4—> 4 @ K is an injection map. Since M, is P-N-
injective, there exists g : N —> M an R- homomorphism such that gi = 5, f. In fact,
| if 7, : M—> A is a projection map, then z,7, = 1, .Let A= 7, g. We get that Ai
= gx,gi = x,n, f=f. It follows that 4 is P-N-injective.

(2). (=) Assume that ng is P-N-injective. We will show that A, is P-N-
injective for all i€ Letn € N, f: nR—> M, be an R- homomorphism and ¢ : nR—>
N be an inclusion map. We have 7, : M, —> EM i1s an injection map. Since BM
is P-N-injective, there exists g: N —> EM an R- homomorphism such that gi
=nf Let x: EM —> M, be a projection map. Putting 2 = 7z,g, we get that /1
= gz gl =nnf=f Itfollows that M, is P-N-injective.

(<) Assume that M, is P-N-injective for all i & I We will show that E M, is

P-N-injective. Letn € N, f: nR —> QM', be an R- homomorphism and 7 : sR—> N



be an inclusion map. We have 7, : l'I‘r M,—> M, be a projection map. Since M, is P-

N-injective, there exists o, : N—> M, an R- homomorphism such that 4,1 = z f.
For eachx & N, define

h N%EME by mh(x) = hfx) for alli€ ]
Since the #z, and the A, are R- homomorphisms, it follows that ~ defines an R-
homomorphism. Moreover 7 h = h, for alli € L We have m. ht = hi = =z f

for alli € L So At =f It follows that 1"{'1141 is P-N-injective.
(3) (=) Since M, is a direct summand of 6—% M, for alli €1, by (1) we get

that M, is P-N-injective forall /€1

(¢<=) Assume that M, is P-N-injective for all i €1 We will show that G?r M,
is P-N-injective. Let n€ N, f: nR —> EB, M, be an R- homomorphism and 1. nR

—> N bean inclusion map. Put f{n) = (m,),c, ,then m, is zero for almost all

i€ I, We get that fluR) = fmR C 6-‘)&_ M, for some finite subset F of 1. Since

® M, = I1M, is P-N-injective by (2), there exists h: N —>@® M, an R-homo

ieF ieF ieF

morphism such that %#:¢ = f Because G%Mf, - @IM‘ , 80 h:N—> @M, an

iel

R-homomorphism such that Az = f. Therefore 6—3M’t 1s P-N-injective. []

2. Cyeclically Injective Rings
Definition. Let R be aring. Ris a cyclically injective ring ( C-ring ) if
every simple right R-module is P-N-injective for all cyclic right R-modules N.
Equivalently, Ris a C-ringif and only if every simple right R-module is PJ%-

injective for all right ideals I of R.



3.2.1 Examples.

(1). Every V-ring is a C-ring.

(2). Every division ringis a C-ring.

Proof. Let R bea division ring. We want to prove that R is a C-ring. Let S
be a simple right R-module and [ be a right ideal of R. Since R is a division ring, R
and 0 are the only rightideals of R . We will show that § is P-I% -injective . If
I=01let 0 £a€ R, f: aR — S be an R-homomorphism and i : aR —> R be an
inclusion map. Thus aR =R. Put h=f we have 4i =f This means that S is P-
R-injective. Because % = R, by 3.1.2(2), we get that S is P—%-injective.
If / = R, we have %E 0. Since S is P-O-injective, § is P—%-injective by

3.1.2(2). Hence R is a C-ring. [

(3). Z, is nota C-ring where n2 1.

Proof. First, we will show that §Z4n is maximal. Let 4 be a right ideal
of Z, and EZ‘m CA4CZ, . Thus there exists a € 4\ §Z4n, s0 a# 2 x for
all x € Z, . That is a # 2x for all x € Z This implies that (a, 2) = 1. Thus
1 = as+2r for some s, € Z We get that ;= as+2r €4,504=2,.

= . . . Z . .
Hence 2Z, is maximal. This means that % is simple. We want to show
4n

that Z, isnot a C-ring. Suppose that Z, is a C-ring. Define

:27Z —>Z4‘1— by f(2m) = m+22Z, forallm€ Z,
4n 224 4n 4n
il

Next, we will show that f is well-defined. Let 2m =0, then 4n |2m. That is 2m
= 4nl forsome | €Z Wehavem =2nl. Som € §Z4n. Thus f 1s well-defined

and it is clear that f is a Z, -homomorphism. Because Z, isa C-ring, there exists

h:Z_ —> Zan o7 a Z, -homomorphism such that ki = f wherei: §Z4n —> Z,
4n
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is an inclusion map. Since 1 € Z,_, (1) € Z% Put A(1) = w + 2Z, for
4n

some w € Z,, . Consider Wl+1) = R+ 51 = (w +ZZ )+(w +ZZ ) =
2w +2Z, and h(2) = hi(2) =f(2) = f(21) =1+2Z,_. So 2w-1€

5Z4n which is a contradiction. Hence Z, is not a C-ring. []

3.2.2 A characterization of C-rings.
The following conditions are equivalent :
(1) Ris a C-ring.
(2) For each right ideal Iof R, each principal right ideal P of R, each maximal

subideal K containing I of P+I, there exists a maximal right ideal M containing

Iof R such that K =M\ (P+]).
Proof. {1)=>(2). Assume that R is a C-ring. Let I be a right ideal of R, P be

a principal right ideal of R and X' be a maximal subideal containing 7 of P+1. We get
that % is cyclic (P+1 % is a cyclic submodule of 1% and (P ‘“T%{ is simple.

Since (P+I%K/ o~ (P+I)K,(P+I% is simple.Let 7. (P"'I%—)(PJJ%
I I I

be a natural homomorphism and i : (£ '“ry —> Iy be an inclusion map. Because

(P+1 /
R 15 a C-ring, there exists 4 : / —> / an R-homomorphism such that

+1
hi =7 We have Imh=0 or Imh = /// If Imh=0, then & =0. Thus

z =0, It follows that I% = Kerz = P+1) 4 which is a contradiction. We have

R P+1)
Aéerh ZImh = % Therefore Ker h is a maximal submodule of %
i
R R
Put Ker i = MA Because A i A is simple and A A% = %J,we have M is

a maximal right ideal containing J of R. Next, we will show that K =M M (P+]).
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Let k€ K, wehave 0=z (k+D)=hi (k+D)=Hh (k+I). Thatis k+] € Kerh = MA |
Thus k£ € M. It follows that X C MM(P+I). Let y € MM\(P+]), thus y+I €
MA . We get that 0= h(y+I) = hi (y+I) =z (y+1). Thatis y+I € Ker r = I% Thus
y€ K. It follows that MM (P+I)C. K. Hence K = M (M (P+]).

(2} = (1). Assume that (2) holds. We want to show that R is a C-ring. Let §
be a simple right R-module, I be aright ideal of R. We will show that S is P-% -

injective. Let a €R, f: (a+)R—> Sbe a nonzero homomorphism and 1 : (a+)R—>
% be an inclusion map. We have (a+DR = (aR+I% Let Kerf = K 7> We get

(aR+1)
that (aR+I%< = % K/ = Imf = S. Since Sis simple, K is a maximal
I

subideal containing 7 of aR+I. By (2), there exists a maximal right ideal M containing
I of R such that K= M\ (aR+]). If aR+ 1 & M, then aR+I =K which is a
contradiction. Thus aR+1Z M. We have M C M + aR+I C R Because M isa
maximal ideal of R, R = M+aR+l Let z+I € R (& thus z+I = m+ar+I for some
m& M and for some r & R .Define
B % —>S by hiz+D) = flartD

Next, we will show that 4 is well-defined. Let z,+1, z,+] € % and z,+I =z,t],
thus (m,+ar,+1) = (m,+ar,+I). We get that (ar- ar))+I = (m,-m)+I € MA . That
is ar-ar, € M(aR+I) = K. So (arj-ar)}+l € I% = Kerf This implies that
fl(ar - ar,)+1) = 0. That is flar,+]) = flar,+]). Therefore & is well-defined and it is
clear that 4 is an R-homomorphism.We will show that Az =f let ar+l= (ar+i) +/
e (aR+1I) (R We get that ht (ar+]) = h(ar+I) = h(0+ar+1) = flar+l) . Therefore

hi=f. Hence S is P-% -injective. It follows that R is a C-ring. O
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3.2.3 Theorem. Let M be a right R-module, N be a cyclic right R-module
(N=tR) and ;M= {m € M/ r () & ry(m)}. Then the following conditions are
equivalent:

(1) M is P-N-injective.

(2) For each n = ta€ N and each f€ Hom (nR, M), f(n) € ,Ma.

(3) Foreachn=ta€ N, I, r,(n) = ;Ma.

(4) Foreachn =ta€ N and each mE M, r,(n) S ry(m) implies Sm & yMa,
where S = End(M).

(5) Foreachn=ta€ N and each b€ R, I, [bR M ryn)] =1,,(b) + ,Ma.

Proof. (1)=>(2). Assume that (1) holds. Let n=ta € Nand f€ Hom (nR,M).
Since M is P-N-injective, there exists & : N—> M an R-homomorphism such that /i
= f where i: nR—> Nis an inclusion map. Thus f{(n) = hi(n) = h(n) = hta) = h(t)a
and we have h(f) € M. We will show that h(f) € (M, ie., r() T r(h(®). Let
y& r(t), thus fy=0. We get that A(t)y = Alty) = h(0) = 0. That is y &€ r( (D).
Hence h(t) & ,M. It follows that f(n) € \Ma.

(2)=(3). Assume that (2) holds.Let # =ta<€ N and y€ ,Ma. Then y =
ma for some m € M. Thus ry(t) C ry(m). We want to prove that y& [ r.(n), ie.,
yz=0 forall z € rn). Let z € ry(n), thus 0 = nz = faz. That is az € r(t) &
r(m). We get that maz = 0. Consider yz = maz =0, thus y€ [, ry(n). Therefore
wMa C 1, r(n). Conversely, let x€ I, ry(n).Define

f:nR—> xR by flnr)=xr forall € R
Thus f is well-defined and an R-homomorphism. Let { : xR —> M be an inclusion
map and % = if € Hom (nR, M). By (2), we get that h(n) & ,Ma. Consider n€
nR, we have b(n) = if(n) =f(n) =fnl)= xI = x. So x €, ,Ma. Therefore I, r,(n)
. yMa.
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(3)= (4). Assume that (3) holds. Let # =ta € N, mE€ M and r(n) C r (m).
Then {m} C L, rm) C I, r{n) = Ma. So m= m'a for some m € ~M , thus
r() C rR(m/). Let x&Sm, then x = f(m) for some f & S. We have fim) = f(m/a)
= f(m/)a. Next , we will show that j(m/) € M ie., rt) & rR(f(m/)). Let y €
rt), thusy &€ rR(m/). That is m/y ={(, wehave 0 = f(m/y) = f(m/)y. This means
thaty € rR(f(m/)). Therefore f(m/) € M. Tt followsthat x = Am) € ,Ma. Hence
Sm O Ma.

(4)=(1). Assume that (4) holds. Let n=ta€ N, f € Hom(nR, M) and i : nR
—> N be an inclusion map. For each x € r(n), we get that nx = 0. So fln)x = f(nx)
= f(0) = 0. Hence x € r,(f(n)). That is r(n) C ry(fAn)). By assumption, we get that
S {(f(n)) C ,Ma. Thus fn)=ma for somem & , M. Thus r,(¢) C r(m). Define

h:N—>M by h(tr) =mr forall r ER

Then 4 is well-defined and an R-homomorphism. Let nr € nR for somer €R. We
get that Ai(nr) = h(nr) = h(tar) = mar = flin)r = flnr), so hi =f Hence M is P-N-
injective |

(4)=>(5). Assume that (4) holds. Letz = ta € N and bER. We will show
that I, [6R M r(m)] = 1, (6) + yMa. Let x € I,,[bBR (M ry(n)], then xy = 0 for all
¥y € bR (\ry(n). For each r € ry(nb), nbr =0. So br € bR( N\ r(n) and thus
xbr =0, i.e.,r € r(xb). Therefore r(nb) C ry(xb). This implies that xb € ,Mab,
by (4). Thus xb =mab for some m € M We have (x- ma)b =0, thus x-ma €
1,(b). So x-ma =z for somez € I,(b).Therefore x =z + ma € [,(b) +,Ma. This
means that [, [bBR Mr(n)] C I,,(B) + ,Ma. Conversely, let x € [,,(b) -+ yMa.
Then x = y +ma for some y € [, (b), m € M. Thus r,(t) & r(m). We get
that xb = yb + mab = mab. We want to show that x € I, [bR (M r(n)]. Let y

€ bR (M ry(n), thus y = br for some r€ R and ny = 0. Therefore 0 =ny = nbr
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= tabr. We get that abr € r(f) Cr (m). That is mabr =0. Consider xy = xbr
= mabr = 0. This implies that x € I,[BRMVry®)]. Thus 1,(}) + ,Ma C
L bR M r(n)]

(5)=(3). Assume that

LABR M ry(m)] =1,,(b) + ,Ma forall n=ta €N, forall b€ R, ——-mmemen (%)
Put b=1 in (x), we get that [, [R M rym)] = 1, () + ,Ma. Therefore I, r (n)
= Ma. [

By putting N =R in Theorem 3.2.3, we then get , M = M. So we have:

3.2.4 Corollary. Let M bea right R-module and S = End(M). Then the
Jollowing conditions are equivalent:
(1) M is P-injective.
(2) For each a€ R and each & Hom (aR, M), f{a) € Ma.
(3) Foreacha€ R, I, r(a) = Ma.
. (4) Foreacha€ Rand eachm& M, r{a)C r,(m) implies Sm C Ma
(5) Foreacha, b€ R, I IbBRMr ()] =1,(}) + Ma.

Since for each simple right R-module S, we have S = % (5) forall 0# s€
R

S. Thus r,(s) is a maximal right ideal of R. Therefore M = {8/ /M is a maximal
right ideal of R} is aclass of representatives of simple right R-modules. For

convenience if givena right ideal Jof R and a maximal right ideal M of R, we
will denote that 4R = {x€ R/xICM} and wR = {x+ME Bf /xICM}.
Equivalently, ,, R = {x ER / r,(I+D) Crx)} and mR ={x+ME€E %J /

rd+D C rfx+ M)}
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3.2.5 Other characterizations of C-rings.
Let R be a ring . Then the following conditions are equivalent :
(1) R is a C-ring.
(2) For each right ideal Iof R, each maximal right ideal M of R, each a< R and
each f € Hom ((a+ DR, %/f)’ flat]) € mRa.
(3) For each right ideal I of R, each maximal right ideal M of R and each a & R,
l% rfat+ D = mRa
(4) For each right ideal I of R, each maximal right ideal M of R and each a, b€ R,
rda+ D) Crb+ M) implies S(b+ M) & m Ra,where S = End(%/f )
(5) For each right ideal I of R, each maximal right ideal M of R and each a, bER,
Ly ROV rat D] = 1y, (8) + mRa
Proof. (1)=(2). Assume that R is a C-ring. Let I be aright ideal of R, M
be a maximal right ideal of R, a€ R and f € Hom ((a+ DR, %4[ ) . Since %4[ is
simple, by assumption we get % is P—‘% -injective. Then there exists A : %
—> %J an R-homomorphism suchthat hi = f where i:(a+ DR —> ‘% is an
inclusion map. Thus fla+ 1) = hi(a+1D) = h(a+1D) = h(I+ 1) a. Because h(/+ 1)
€R/ let h(I+1) = z+ M for somez € R. We will show that z+ M € m R,
ie., zI & M. Foreach xE I we have x+ I = 0. Thus A(/+ Dx = h(x+ 1) = h(0)
= 0, we get that x &€ r(h(I+ 1) = r(z+ M). Therefore I rz+ M).Let y €
zl, thus y = zw for some w € I & ry(z+ M). That isy € M, so zI C M. Hence
2+ M € m R. Tt follows that fla+ ) =h(I+ D a € m Ra. |
(2)=>(3). Assume that (2) holds. Let I be aright ideal of R, M be a maximal
right ideal of R, aERand x € n Ra. Thus x = (z+ M)a for some z+M € nR.

We get that zI & M. We will show that x € I*V relat D), ie., xy = 0 for all
, M

y € rlat D). Let y € rla+1),thus ay € I We get that zay € zI ¢ M. Consider
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xy = (z+ M)ay = zay+ M = M. This implies that x& / v ro{a+ I). Therefore m Ra
ci 5, ri{a+ I). Conversely, let x&€ [ 5, rlat ) Thus xy = 0 forall y € r(a+ D).
Define
f:@+DR—>xR by flar+ D) =xr for all »r & R

Clearly f is well-defined and an R-homomorphism.Let 7 : xR—)% is an inclusion
map and s =if € Hom ((a+ DR, %/[). By (2), we get that Ala+]) € m Ra.
Consider h(a+ 1) = iflat ) = flat I) = x, thus xE m R a. Therefore I Y, rilat+ ).
- mRa.

(3)= (4). Assume that (3) holds. Let 7 be aright ideal of R, M be a maximal
right ideal of R, a, bER and r(a+1) & r(b+M). Then {b+ M} C l% rb+M)
- l% rolat ) = mRa.Hence b+ M = (r+ M)a for some r+ M € R, thus

HHC M Let x € S(b+ M), then x = b+ M) for some /€ S. We have flb+ M)
= A(r+Ma) = flr+ M)a. Since flr+ M) € %/1, let fir+ M) = z+ M for some
z € R. Next, we will show that z+tM € ar E, ie., zI C M. For each x& I, we
have rx € rI C M. Thus rx+M = 0. Consider fr+M)x =flrx+ M) = f(0) =0,
we get that x € r(fr+ M)) = r(z+ M). Therefore I C rfz+M). Let y € zI,
thus y =zw for some w & I CC rp(z+ M). Thatisy € M, so zIC M. Hence z+ M
€ wm R. 1t follows that fo+M)=fr+ M)a € m R a. Hence S(b+ M) Cm Ra.
(4)=(1). Assume that (4) holds. We will show that R is a C-ring. Let Sbe
a simple right R-module and N be a cyclic right R-module. Thus § = %4, for
some maximal right ideal MofR and N= ‘% for some right ideal 7of R. We
show that 1%4 is P—%-injective. Let a €R, f: (a+t HR—> %Jbe an R-
homomorphism and i : (a+ DR ——)% be an inclusion map. For eachx€ r(a+ J),

we get that ax+ /= 0. So flat+ Nx =flax+ ) =f(0) = 0. Hence x€E r,(fla+ D). That
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is ryla+ ) S r(fla+ D). By assumption, we get that S (fa+ 1)) C nrRa. Thus
flat+ )= (z+ M)a for somez+ M € n R. We have zI C M. Define
h: %—) %4 by h(rt+ [} =zr+ M forall » ER
Then A4 is well-defined and an R-hbmomorphism. Let ar+ 1 € (a+ DR for some
r € R. Consider hi{ar+1)= hlar+ 1) = zar+ M = (z+ M)ar = fla+ Dr = flar+ D,
we get that i =f Hence %4, is P—f% -injective. It follows that R is a C-ring.
(4)=>(5). Assume that (4) holds. Let Z be a right ideal of R, M be a maximal

right ideal of R, and a, b € R. We will show that [ %/ [BR M ratD] =
M
I*V (b) + mRa Let x € l‘V [BR M #ya+ )], then xy = 0 for all y € bBRM
M M
rla+ 1) .For each r € rifab+l), abr+I = 0. So br € bR (M r(a+]) and thus
xbr = 0, ie., r € rxb). That is r(ab+7) C ry(xb). This implies that xb €
nt Rab, by (4). Thus xb = zab for some z € mR. We have (x- za)b = 0, thus
x-za € IV (b). So x-za =w for some w EIJy {(b). Therefore x =w +za €
M M

1., (0)+ mRa. This means that [ 2 [BRMrfa+rD] & 1, (B)+ mRa.

M 7 Bt

Conversely, let x € ljy (b)+ m Ra. Then x =y+§a for some y & l:y ®), z €

e M
mR. Let z=z+ M, thuszl C M. We get that xb= yb +zab = zab. We want

to show that x& l}y [BR M r{a+ D], ie., xy = 0 for all y € bR M rlat ).
M

Let y € BR M rplat D), thus y =br for some r €ER and ay+I=1 That is [ =
abr + 1, we have abr € I We get that zabr € zI C” M. Consider xy = xbr =
zabr = zabr+ M = M. This implies that x € lyy [BR (M ryat D] Thus Ly, (5)
M M
+ mRaC Ly, [BR M ra+ ).
M
(5)=>(3). Assume that

l Y, [BR M rplat D] =1 %, (B)+ mRa foralla BER (%)
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Put =1 in (x), we get that / %, [RMrflat+ D] =1 B (1) + nrRa. Therefore

l%l rR(a+I) = IMECI D

3.2.6 Example. Z; is a C-ring.
Proof. Since 0, < 5>, < 3> and Z, are the only right ideals of Z; , < 2>

and < 3> are maximal. We will show that I r, (a+D = IMZ_é(E) for

26 i1

M

all right ideal 7 of R , for all maximal right ideal M of R and for all a € Z,.

Case M =< 2>,

(). IfI = <3>wehave . _Z ={x +t<2>€ Z/_ /§<§>g<3>}
<

<a»<2s 6 2>

= {<2>}. Thus _ _ Z (a) = {<2>} forall a € Z,.

<3s<2>

Consider a € {0, 3}, we have r (a+<3>) = {x € Z, / ax E< 3>}

5
=Z,. Thus [ r (a+<3>) = {x +<2> € Z%_ / xw € < 2> for
z/ z <2>
6/ _ 6
<2
all w€& Z} = {<2>)

Consider a € {1, 2, 4, 5}, we have 7, (a+< 3>) = {;EZ(, / ax €
]
<3>}=< 3> Thus !/ 7 (a+<3>) ={x +<2>E Z/_ / xw €< 2>

<2>
%/ s

<2>

for all ;E<§>} = {<2>}.

Therefore ! r (a+<3> = _ _Z (a) forallc_IEZﬁ.

z Z <Bs<t> 6
6 &

<2>

(). IfI =< 2>, wehave _ _Z ={x +<:>€E Z/_ [x<2> C<2>}
2><2> O <2> -
= Z% . Thus : EE;(E) = {< 2>} when a € {0,2, 4} and
< L

_Z.(a) = Z/_ when 2 € {1,3,3).
<2><2> 0 <

2>
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Consider a €{0, 2, 4}, we have 7, (a+<2>) = {x € Z, | ax E< 2>}

&

=Z,. Thus I r (a+<1>) = {;+<;>EZ/_ / 7w € < 7> for

z z < 2>
all ;EZG} = {< 2>}

Consider a €{1, 3, 5}, we have v (a+<23)={x € Z, | ax E< 2>}

)

=< 2> Thus ! r (a+<25) = {x +<2>€ Z/_ / xw €< 2> for
z, Zd <2>
<;>
all1h4:€<5>}=z/_.
< 2>
Therefore ! r o (a+<2>) = : 56—(;) foralIEEZG.
Za g p <2><2>
<2>

PR _— . Z — — -
_Z ={x+<2>€ 6/ I xZ,C<:2>}=1{<2>}.
Zg<2> <2>

(3).If I=Z,, we have

Thus _ Z_ (a) ={< 2>} forallEEZﬁ. ForeachEEZG, r (c_1+Zs) =Z,.
Ze<2> O Z
)

So 1 r (E+zs)={i+<5>eZ/_ / xw € < 2> for all w€E Z}
z, z <2>

<2>

= {<2>}. Therefore I 7 (5+Zﬁ) = iz(;) forallEEZ6.
z 5<2>
Ay ¢
@1 T=0,wehave _Z ={x+<3>€ %/ 130 C<1>) =Z%
<

0<2> 6 <2 2>.

Thus o5 Z;(E) = {< 2>} whena € {0, 2,4} and _Z (a) = Z/_
<2 <

0<z> 6 7>

when a € {1, 3,5},

Consider a= 0, we have ", (a) = Z,. So 1 r, (a) ={x +< 2>
6 Zﬁ - [/
<2>
€ Z% / xwE <2> forall wE€ Z,} = {<2>}
< 2>

Consider a = 3, we have r, (a) = {;EZ6 / 3x =0} = < 2>

]
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Thus 7 (E)={;+<5>ez/_ / ow € < 7> for all w € < 5>}
z./ 26 < 2>

<2>

Z/
= 6 - .
<2>

Consider 2 € {2,4}, we have 7 (a) = {;EZ6 / ax = 0} =< 3>,

&

Thus / r (E)={;+<3>EZ% /E€<E>forallv_v€<§>}
./ 2'6 <z>

<2>

= {<2>}.

Consider ¢ € {1, 5}, we have r (a) = {;EZG / ax = 0} =0.Thus

6
! r (5)= Z% c
z/ 4 <2>
6/ _ 6
<2>
Therefore 1 r o (a)= _Z(a)foralla € Z.

z

) 6

2>

For M =< 3>, wecan prove in the same way. Hence Z, is a C-ring. H

3.2.7 Lemma. Let E be a right R-module and E be P-N-injective for all
cyclic vight R-modules N. Then the following conditions are equivalent :
(1) E cogenerates every cyclic right R-module.
(2) Hom (T, E) # 0 for all simple right R-modules T.
(3) E cogenerates every simple right R-module.

Proof. (1) = (3). Let S be a simple right R-module , thus S is cyclic. By
assumption , we have E cogenerates S.

(3)= (2). Assume that E cogenerates every simple right R-module. Let T
be asimple right R-module. By assumption, E cogenerates T. Thus Rej(E) = 0.
We want to show that Hom (T, E) # 0. Suppose that Hom (T, E) = 0. For cach

h & Hom (T, E), we have h is a zero homomorphism. Therefore Ker # = T. That
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is 0= Rej{E) = M{Ker h/h €EHom (T, E)} = T which is a contradiction. Hence
Hom (T, E)#0.

(2) =(1). Assume that (2) holds.We will show that E cogenerates every
cyclic right R-module. Let N be a cyclic right R-module and 0# 7 € N. We have
nR has a maximal submodule. Let L be a maximal submodule of nR . Thus ”% is
simple. By assumption, there exists 0 #f € Hom (”%, E). Letn :nR — "%
be a natural homomorphism. We get that f77 is anonzero homomorphism. Since E
is P-N-injective, there exists h € Hom (N, E) suchthat Ai =fr where i : nR
—> N is an inclusion map. Consider A(n) = hi(n) = f1n) # 0. This implies that 4 is
one-to-one. Thus Ker h = 0. We get that Rej (E) = (N {Kerh/h € Hom (N, E)}

= (). Therefore E cogenerates every cyclic right R-module. []

3.2.8 Theorem. The following conditions are equivalent for a ring R :
(1) Each simple right R-module is injective.
(2} Each simple right R-module is P-M-injective for all right R-modules M.
(3) Each simple right R-module is P-N-injective for all cyclic right R-modules N.
(4) The radical of N, Rad N = 0 for all cyclic right R-modules N.
(5) Each right ideal is an intersection of maximal right ideals.

Proof. (1) = (2) Assume that (1) holds. Let S be a simple right R-module
and M be a right R-module. We will showl that § is P-M-injective. Let mEM, f: mR
—> § be an R-homomorphism andi - mR—> M be an inclusion map. Since S is
injective, thus there exists & : M—> S an R-homomorphism such that 4i = £ Hence
S is P-M-injective.

(2) = (3) Let S be asimple right R-module and N be a cyclic right R-

module. By assumption , we have S is P-N-injective.
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(3) = (4) Assume that (3) holds. Let N be a cyclic right R-module. We
want to showthat RadN = 0. Let {S, / i €1} bea set of representatives of
distinct isomorphism classes of simple right R-modules. Let S bea simple right
R-module. We have § E&} for some j&€ I Let f:§ —2 S, be an R-isomorphism
and 77,: S, —> ES" be an injection map. We get that 7,/ : S —> ESI. is one-to-
one. Therefore ES;- cogenerates every simple right R-module. Since S, is simple
for all/ €1 and by assumption, S, is P-N-injective foralli €1 We have ES" is
P-N-injective. We get that ES" cogenerates every cyclic right R-module, by
Lemma 3.2.7. Thus ES" cogenerates N. Then there exists 0—> N ﬁ(i_l;{r S[.)A
a monomorphism for some index set A. This implies that N is cogenerated by the
class of simple R-modules. Hence Rad N = 0.

(4) = (5) Assume that (4) holds. Let I be a right ideal of R, thus% is cyclic.
By assumption , we have {I} = Rad(ly ) =M {M/ - 1y / M/ 18 maximal
in Jy }. We want to prove that (N {M / I C M ismaximalin R } = {I}. Let

x €M {M/IC M is maximalin R}, thcn xE M for all maximal nght ideals
M containing / of R. Thus for each maximal right ideal M containing 7 of R, x+17
= MA Therefore x+1 € M {MA ., % /M% is maximal in % y = {I}.
We have x €I Hence (M {M / I M ismaximalin R } & {I}.1t follows that
M{M/IC M ismaximalin R } = {I}.

(5) = (1) Assume that (5) holds. Let .S be a simple right R-module. We will
show that S is injective. Let I be a right ideal of R, f:I—>S bea nonzero R-

homomorphism and ¢ : /—> R be an inclusion map. Thus %(e of = Imf =S Then

there exists x € 7| Ker f such that Ker f C Ker f+ xR. Since Ker f C Ker f+ xR

C I and Kerf is maximal, we have Kerf+ xR = I Because Kerf isaright
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ideal of R and by assumption, we have Kerf = (T\M, where M, is maximal
ieA
forall i EA. I C M, forall i E A, then ] & MM, = Kerf which is
ieh

a contradiction. Thus there exists j €A such that 7 (Z M,. Because M C
M+ I C R and M, is maximal, M,+7 = R Consider M,(\I = M,

(Kerf + xR) = Kerf + (M, (" xR). Since Kerf + (M, xR) C, |,

(Kerf +(M jme%e’f ' %{e of- Because %(e of is simple , we get that

Ker f+ (M;ﬂ XR) = Kerf or Kerf+ (ﬂ[}ﬂ xR) =1 If Ker f+ (M,(M xR)
= 1, then M,(\I = Kerf +(M,( xR) = I This implies that I & M, which
is a contradiction. Thus Kerf + (M, (M xR) = Kerf We get that M, =
Ker f. Define
h: M}+Iﬁ S by h(m,+i) = fli) forall m+i € M, +1

Next, we will show that % is well-defined. Let m;+ i, m';. +i'e JMJ +7 and mj+i
= m3.+i/,thus i'oi= mj-m’; € M, . We have i’ -i GM;('\I = Ker f That
is0=fi'-) = fi 4- f(@). Therefore k is well-defined and an R-homomorphism,
Let x€ I, thus hi(x) = h(x) = h(0+x) = f(x). Hence hi =f It follows thatS is

injective. ]

Definition. Let R bea ring. Ris a right V-ring if every simple right R-

module is injective.

By the definition of F-rings and Theorem 3.2.8, we can conclude that V-ring

and C-ring are the same ring. Thus we have :

3.2.9 Theorem. The following conditions are equivalent for aring R :

(1) R is a C-ring.
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(2) For eachright ideal I of R, each maximal right ideal M of R, each a € R and
each f € Hom ((a+ DR, %/{), flat D € mRa.

(3) For each right ideal I of R, each maximal right ideal M of R and each a€ R,
l%, roatl) = mRa.

(4) For each right ideal I of R, each maximal right ideal M of R and each a, bER,
relat 1) S b+t M) implies S(b+ M) & m Ra, where S = Ena’(%d )

(5) For each right ideal I of R, each maximal right ideal M of R and each a, bER,
Ly ROVt D] = Ly (b) + mRa

(6) R isa V-ring.

(7) Each simple right R-module is injective.

(8) Each simple right R-module is P-M-injective for all right R-modules M.

(9) Each simple right R-module is P-N-injective for all cyclic right R-modules N.

(10) The radical of N, Rad N = 0 for all cyclic right R-modules N.

(11) Each right ideal is an intersection of maximal right ideals.

Proof. (1)-(5) are equivalent by Theorem 3.2.5, (6) - (11) are equivalent
by Theorem 3.2.8 and it is clear that (1) <> (6). []

3. Cyclically Injective Rings , P-V-Rings and Regular Rings
Definition. Let R be aring. Ris aright P-V-ring if every simple right R-

module is P-injective .

3.3.1 Example. [[5] , 2.3.6 Example ]
The endomorphism ring of a countable infinite dimentional left vector space

is a P-V-ring but not a C-ring.
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Proof. ( For this example , we will write (a)f instead of f(a) where €
Hom (4, B) and a€ A.) Before we prove this example , we will give the following
remark. For two vector spaces V, W and alinearmap f: V—>W we get from the
basis extension theorem
(1). If f is 2 monomorphism, then there is a homomorphism A: W —> V
with fh = 1,.
(2). If f is an epimorphism, then there is a homomorphism k. W —> ¥V
with & = 1,.
Let ¥ be a countable infinite dimentional left vector space over a field F witha
basis {v,},.y and S=End (V). We will show that § is aregularring. Let f €S,

V= %{erf and 77: V—>V bea natural homomorphism. Since Ker 7 = Ker f,

by Factor Theorem, there exists g - V>V a monomorphism such that ng = f.

Since 77 is an epimorphism and both ¥V and ¥ are vector spaces, there exists 5 ‘v
—3 ¥ an R-homomorphism such that 77 = 1-. Since g is a monomorphism and
both ¥ and ¥ are vector spaces, there cxists § :V—>V such that g§ = 1.
Consider / = ng = nl,g = nqng = nnf = nlynf = nggn/ = fenf
with g 7 € S. Therefore S is aregular ring. Hence $ is a P-V-ring. Moreover,

we have V' is a right S-module. Next, we will show that ¥V, is simple, ie., u,S

=V forall 0 u,&V. Let 0Zu, €V, thus u,= > rv, for some r, € F.

keN

We get that u,§ C V. We will show that {u,} is linearly independent. Let » € F

and ru, = 0, thus Y, (rr)v, = r(3, r,v,) = 0. We have rr, =0 forall k €EN.

keN keN

If »,= 0 for all k € N, then u, = 3 r,v, = 0 which is a contradiction. Thus

keN

r = 0. This implies that {u,} is linearly independent. Then we have {u,} can be
‘extended to a basis of ;V. Let { Uy, Uy, u, ,....; beabasis of V. We want to show

that ¥V C u,S. Letv& V. Define
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h:V =V by (wh =v, (w,)h = 0 foralli € N\{I} and (X ru,)h=

keN

> 1Gu )h)

keN

Let ¥ rnu €V and Y r,u, = 0, thus r, =0 for all ¥ € N. We get that

keN keN

(X ru)h =3 rl(u)h) = 0. Therefore h is well-defined and an F-homo

keN keN

morphism. Moreover, we have &€ § and (4, )2 = v. Wegetthat VC u S SoV =
u,S. This implies that ¥ is simple.Let J = {f € S/(v,)f # 0 for only finitely
many k¥ € N}. We havel is an ideal of S. We want to show that § is not a C-

ring. Suppose that Sis a C-ring. Define

g:l=>V;, by g(f) =% ) foral ferl

keN

Therefore g is well-defined and an S-homomorphism. Since ¥ is simple and S isa
C-ring , there exists g1= : § —> V an S-homomorphism such that i g* =g where i:

I—> § is an inclusion map. Since I, € S, let g*I Al for some r,€ F.

keN

For each f € I, we have ¥ (v, )f = g(f) =ig (NN =g (N=gU, /)= &1, )

keN

= (X v, )= 3 r,((v,)f). Let k € N. Define

keN keN

fv=>Vey ) =v, 0, =0 forall jEME and (¥ 1)

keN

SNACH D)

keN

Therefore f "is well-defined and an F-homomorphism. Moreover, we have f ‘el

Thus v, =3 (vk)f*= Erk((vk)f*)= 7, vi. We get that (r,—-)v, =0, so r, =

keN ke

1. This implies that », =1 for all K € N which is a contradiction. Hence S is

not a C-ring. H

Definition. Let R be a ring, Ris a right duo ring if every right ideal of R

is a left ideal of R.
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Recall that for a right ideal Jof R and a maximal right ideal M of R,

R =x/xIC M}

3.3.2 Propeosition. IfR is a right duo ring, then , \R =M or , R =R.

Proof. Let R be aright duo ring and ,,R # M. Then there exists x &, R\ M.
Therefore xI C M. We get that xa € M for alla €1 Since M is maximal and
x& M, xR+M=R Thus xr +m =1 for some r ER, m €EM. We have a =
x(ra) + ma € M for all a € ], since R is right duo. This implies that I C M.
Next, we will show that , R = R Let y € R, thus ya € IC M for all

a € I Therefore y €, R. Hence , R =R [
From above Proposition, we have IM}_E =0 or IME = %4, .

3.3.3 Lemma. The following conditions are equivalent for a ring R :
(1) Ris a P-V-ring.
(2) For each maximal right ideal M of R, each a € R and each f€ Hom (aR, % ),
R
fa) € (B4 a
(3) For each maximal right ideal M of R and each a€ R, | B, ria) = (%/f Ja.
(4) For each maximal right ideal Mof R and each a, b€ R, r(a) C r b+ M)
implies S(b+ M) C (%{ Ja, where S = End( %J ).
(5) For each maximal rightideal M of R and eacha, bE R, [ %/ [bBR M r(a)] =
M

Ly, B) + (B )a
Proof. See [4] page 29. 0]
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3.3.4 Theorem. The following conditions are equivalent for a right duo
ring R :
(1) Risa C-ring.
(2) For each maximal right ideal M of R, each a € R and each f € Hom (aR, %/I ),
fla) € (%/f )a.
(3) For each maximal right ideal M of R and each a€ R, ! 7 rea) = (%J )a.
(4) For each maximal right ideal M of R and each a, bE R, r(a) & r(b+ M)
implies S(b+M) C (%J Ja, where S = Erzaf(‘%4r ).
(5) For each maximal right ideal M of R and eacha, bE R, | B, [BR M r(a)]
=Ly () + (B4 a
(6) R is a P-V-ring.
Proof. (2) - (6) are equivalent by Lemma 3.3.3. Since every C-ring is a P-V-
ring, (1) implies (6). Thus we only prove (4) = (1).
(4)=(1). Assume that (4) holds. We want to show that R isa C-ring. Let
S be a simple right R-module and N be a cyclic right R-module. Thus S = %
for some maximal right ideal M of R and N= % for some right ideal 7of R.
We will show that %/[ is P-% -injective. Let a € R, f: (a+ DR —> %/[be a
nonzero R-homomorphism and i : (a+ DR —‘7\% be an inclusion map. For each
x€ rya), wegetthat ax =0. That is ax+I=1 So flat Dx =flax+)=£0)=0.
Hence x € r(flat ). That is rfa) C rflat+ ). By assumption, we get that
S{flat+t ) C (%/‘, Ya. Thus fla+I) = (z+ M)a for somez+ M € %J . Define
h: % ﬁ‘%dr by h(r+1) =zr+ M forall r € R.
Next, we will show that & is well-defined. Let r+71 € 1% and v+ 7= thusr € L.

We get that z» € I. Consider flat]) € %4’ , we show that flat+]) € IME, ie.,
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rI+1) C rfflatD). Let y € r(I+1), thus y € L Since R is a right duo
ring, ay € I. Thus fa+Dy =0. So y € r,(fa+ D). Since fla+I) is nonzero,
by Proposition 3.3.2 we have fla+]) € IMI_Q N %/{ It follows that , R = R. We
have bl C” M for all b € R. Hence zr € M. Then 4 is well-defined and an
R-homomorphism. Let ar +1 € (a+ DR for some r € R. Consider hi(ar+ 1) =
hlar+ )= zar+ M= (z+ M)ar = flat D)r = flar+ 1), we get that hi = f Hence
%4 is P—%-injective. It follows that R is a C-ring. ' [

In general not every P-V-ring is a V-ring, as example 3.3.1 shows. But for a

right duo ring, R is a V-ring if and only if R is a P-V-ring.

Definition. 4n element a of the ring R is called a (von Neumann) regular
element if there is b ©R with aba = a. A ring R is called (von Neumann) regular if
every element in R is regular.

For V-ring and regular ring we have :

3.3.5 Theorem. [{2], Theorem 4.8].
Let R be aright duo ring. Then Ris a V-ring if and only if R is a regular
ring.

By Theorem 3.2.9,3.3.4 and 3.3.5 we get:

3.3.6 Theorem. The following conditions are equivalent for a right duo
ving R:
(1) R is a V-ring;
(2) Ris a P-V-ring;

(3) R is aregular ring.



30

We now give another characterization of a regular ring when it is right duo.
At first we need the following lemma.,

Let M be aright R-module and N = ¢R be a cyclic right R-module. Assume
that M is P-injective. Then for each n = fa €N and for each f: nR—>M an
R-homomorphism there exists g - aR—>nR defined by ar > nr an R-homo
morphism. Let %, ., = fg. Since M is P-injective, there exists h': R—>M be

an R-homomorphism such that ni = P oy = Je.

aR R
g i’ n
h(n’ 1 nR N
A';
M

Therefore we will denote

Hom (R, M),, ={ b € Hom (R M)/ %' is an extension of P, oy for some
nEN, f€ Hom (nR, M)and a€ER }

Thus for each % € Hom (R, M),,, there isana €R which corresponds to

this # and we will denote it by a.

3.3.7 Lemma. Let M be aright R-module. Then the following conditions
are equivalent :
(1} M is P-injective.
(2) M is P-N-injective for all cyclic right R-modules N=tR with h (D)a € NMa*

for all h € Hom (R M), .
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(3) M is P-N-injective for all cyclic right R-modules N = (R with v, (f) C r(h ()
for all i € Hom R M),
(4) M is P-N-injective for all cyclic right R-modules N=1tR with r,({) & MP
where P is a nonzero principal vight ideal of R.

Proof, (1)=>(2) Assume that (1) holds. Let N = ¢R be a cyclic right R-module
with h*(l)a* e M a for all A € Hom (R, M), . We want to prove that M is P-
N-injective. Let n = ta € N, f: nR—> M be an R-homomorphism and i - nR—>N
be an inclusion map. Define

g: aR—> nR by glar)=nr=tar forall »r ER
clearly g is well-defined and an R-homomorphism. Putting %, .., = fg: aR—> M
and let i’ aR —> R be an inclusion map. Since M is P-injective, there exists
h': R—> M bean R-homomorphism such that 47’ = h, 1o - Consider B (a) =
B (Da € yMa. Let h‘(a) = ma forsomem € M, thus r, (f) C r,(m). Define
f i N>M by f@)=mr forall »r €R

Let x €R andtx = 0. Thenx € r, () & r, (m). We get that mr = 0. Hence f*is
well-defined and it is clear that f “isan R-homomorphism. Next, we will show that
f = f Let nr € nR. Then f *i(nr) =f *(nr) = f ‘(tar) = mar = h*(a)r =1'i'ar) =
hy, J:a)(ar) = fglar) =f(ur). It follows that M is P-N-injective .

(2)=(3) Assume that (2) holds. Let N= tR be a cyclic right R-module
with 7, () C r,(h' (1)) forall '€ Hom (R, M),. Since r, () < r (k' (1)), k(1)
€ M. Therefore hW(a € NMa*. By assumption, we have M is P-N-injective.

(3)=(4) Assume that (3) holds. Let N = tR be a cyclic right R-module with
ro ((} & (VP where Pisanonzero principal right ideal of R. We want to show
that r, (1) & r(h (1)) for all #"€ Hom (R, M),,. Let i € Hom (R, M),, , thus &~

is an extension of h(n fa) for some n € N, f € Hom (nR, M) and a €R. We have
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PosaX e @) = felry ) = ft G, () = f0) = 0 where g : aR —> nR is an R-
homomorphism defined by glar) = nr. That is r, () & Ker B, 10y - Consider
x € Ker k" iff h'(x) = 0 iff x € r,(h'(]). This implies that Ker &’ = r(h'(2)).
Since % isan extension of e, sy Kerhy, ) C Ker B We get that r, () C&
rR(h*(I)). By (3), we have M is P-N-injective.

(4)=(1) Assume that(4) holds. Putting N =R. Since R=1IR, 0 = (1)
C M P where P is anonzero principal right ideal of R. By assumption, we have

M is P-injective. O

3.3.8 Corollary. Let R bea regular and right duo ring. Then every right
R-module is P-N-injective for all cyclic right R-modules N.

Proof. (=) Let M bea right R-module and N = fRbea cyclic right R-
module. We want to show that M is P-N-injective. Let k'€ Hom (R, M), thus
A is an extension of hy, ) for some n € N, f € Hom (nR, M) and a€ R. We
get that h*(])a = h*(a) = h*i/(a) = fg(a) = f(n) where g: aR —>nR is an R-
homomorphism defined by g(ar) = nr and i': aR — R is an inclusion map.
Since R is aregular ring, a = axa for some x € R. Consider h*(I)a = k*(])axa =
fxa = f(nx)a. Next, we will show that r(t) C r(f(nx). Let y € rd) .
Since R isaright duo ring, axy € r(8). Thus nxy = taxy =0. We have f(nx)y
= 0. Therefore y € ryf(nx)). This implies that f(nx) €,M. It follows that

k*(I)a = f(nx)a €,Ma. By Lemma3.3.7, we have M is P-N-injective.

Definition. Let K and N be right R-modules. K is an N-cyclic submodule

of Nif Kisasubmoduleof Nand K = % Jor some submodule L of N.
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Definition. Let M and N be right R-modules. M is semi-N-injective if every

R-homomorphism f- K —> M, K an N-cyclic submodule of N, extends to N.

3.3.9 Proposition. Let M be aright R- module. If M is P-N-injective for

all cyclic right R-modules N, then it is semi -N -injective for all cyclic right R-
modules N.

Proof. Assume that M is P-N-injective for all cyclic right R-modules N. Let

A be a cyclic right R-module . By assumption, we have M is P-A-injective. We

want to prove that M is semi-4-injective. Let K be an A-cyclic submodule of A4,

f : K =M be an R-homomorphism and i : K—2 A4 be an inclusion map. Therefore

KC_ A4 and K = % for some L C_A We get that X is cyclic. Since M is

P-A-injective, there exists A + A—>M an R-homomorphism such that #i = f.

Hence M is semi-A4-injective. [

3.3.10 Proposition. The following conditions are equivalent for a right duo
ring R :
(1) R is regular;
(2) Every right R-module is P-N-injective for all cyclic right R-modules N;
(3) Every right R-module is semi-N—injective Jfor all cyclic right R-modules N;
(4) Every right R-module is P-injective;
(5) Ris a V-ring;
(6) Risa P-V-ring.

Proof. (1) =>(2) is Corollary 3.3.8 , (2) =>(3) is Proposition 3.3.9, (4) =(1)
see [4] page 18 and (1) (5) <> (6) is Theorem 3.3.6. Thus we only prove (3)
= (4).

(3)=>(4). Let M be a right R-module. By (3), we have M is semi-R-
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injective. We want to show that M is P-injective. Let 0 #a €R, f: aR—> M be an
R-homomorphism and i : aR—> R be an inclusion map. Since aR = %R (2)> We
getthat aR is an R-cyclic submodule of R. Because M is semi-R-injective , there

exists  : R—> M an R-homomorphism such that 4i = £ Hence M is P-injective. []



