VIII

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	III
ABSTRACT	IV
TABLE OF CONTENTS	VIII
LIST OF FIGURES	XI
LIST OF TABLES	XIII
ABBREVIATION	VIX
CHAPTER 1 INTRODUCTION	1
1.1 Statement and significance of the problem	1
1.2 Literature review	3
1.2.1 Hemoglobin structure and function	3
1.2.2 Genetic control and synthesis of normal hemoglobin	4
1.2.3 Globin gene cluster	6
1.2.4 The thalassemia	9
1.2.5 The α -thalassemias and it molecular defects	9
1.2.5.1 α° - thalassemia or α - thalassemia1	10
1.2.5.2 α^+ - thalassemia or α - thalassemia 2	11
1.2.5.3 Nondeletion α- thalassemia	15
1.2.6 The clinical syndromes of α-thalassemia	17
1.2.6.1 Silent carrier: the lost of a single α - globin genes	17
1.2.6.2 Alpha- thalassemia trait: the lost of two α- globin genes	18
1.2.6.3 Hb H disease	18
1.2.6.4 Hb Bart's hydrops fetalis	20
1.3 The molecular approaches in detection of α - thalassemia 2 ($-\alpha^{3.7}$)	21
1.3.1 PCR technology	21

1.3.2 General principles	21
1.3.3 The standard reaction	23
1.4 Objectives	27
CHAPTER 2 RESEARCH DESIGN AND METHODS	28
2.1 Research design for detection of α - thalassemia2: rightward ty	pe $(-\alpha^{3.7})$ 28
2.2 Methods	30
2.2.1 Samples	30
2.2.2 Genomic DNA preparation	30
2.2.3 Polymerase chain reaction	33
2.2.3.1 Primer selection	33
2.2.3.2 Components of polymerase chain reaction	37
2.2.4 Agarose gel electrophoresis	39
2.2.5 Hemoglobin electrophoresis (Hemoglobin typing)	40
2.2.6 Hematological examination	42
2.2.6.1 Hematocrit by microhematocrit method	42
2.2.6.2 Red blood cell count	44
2.2.6.3 Hemoglobinometry by cyanmethemoglobin	method 47
2.2.6.4 Osmotic fragility test	49
2.2.6.5 Acid elution test	51
2.2.6.6 Inclusion bodies test	53
CHAPTER 3 RESULTS	55
3.1 Genomic DNA preparation	55
3.2 Polymerase chain reaction	55
3.2.1 Optimization of the PCR component	55

3.2.2 The identification of $-\alpha^{3.7}$ genotype	
by PCR technique	5
3.2.3 The reliability of the PCR protocol	6
3.3.4 Detection of $-\alpha^{3.7}$ deletion in two HB H disease family	6
3.2.5 The identification of $-\alpha^{3.7}$ genotype in Northern	
Thai population by PCR technique	61
3.3 Results from hematological screening	72
3.3.1 The hematological characteristic of	
α - thalassemia2 carriers $(-\alpha^{3.7})$	72
3.3.2 Result from hemoglobin electrophoresis	73
3.3.3 Result from inclusion bodies test	75
3.3.4 Result from acid elution test	76
CHAPTER 4 DISCUSSION	77
CHAPTER 5 CONCLUSION	81
REFERENCES	82
APPENDIX	91
VITA	98

LIST OF FIGURES

FIGURE	PAGE
1. Hemoglobin structure	3
2. Schematic representation of the α - globin and β - globin gene cluster	5
3. Schematic representation of the α - globin gene cluster	7
4. Schematic representation of the β - globin gene cluster	8
5. The deletion of the alphaglobin gene cluster that are responsible for	
α ° and thalassemia.	13
6. The single alpha globin gene deletion and its proposed mechanisms.	14
7. Schematic representation of amplification of target DNA sequence	
by polymerase chain reaction technique	22
8. Schematic representation of the procedure in this research	29
9. Schematic representation of genomic DNA preparation	32
10. The locations of amplification for the specific primers	33
11. Hemocytometer	46
12. Manner of counting erythrocytes in one of small squares	46
13. Hemoglobin standard calibration curve	48
14. The optimization of the deoxynucletide 5'-triphosphates concentration	
for detection of $-\alpha^{3.7}$ by PCR	56
15. The optimization of annealing temperature for detection of	
$-\alpha^{3.7}$ kb deletion by PCR	57
16. The optimization of extension time for detection of	
- $\alpha^{3.7}$ kb deletion by PCR	58
17. Identification of $-\alpha^{3.7}$ kb deletion in genomic	
DNA samples by PCR	60

18. Detection of $-\alpha^{3.7}$ kb deletion in the normal DNA samples by PCR	62
19. Detection of $-\alpha^{3.7}$ kb deletion in the normal and positive control	
genomic DNA by PCR (N1, P1-4, and H1)	63
20. Detection of $-\alpha^{3.7}$ kb deletion in the normal and positive control	
genomic DNA by PCR (N1-2, P5-7, and H2)	64
21. Detection of $-\alpha^{3.7}$ kb deletion in hemoglobin H family (1st) by PCR	65
22. Detection of $-\alpha^{3.7}$ kb deletion in hemoglobin H family (2nd) by PCR	66
23. Detection of $-\alpha^{3.7}$ kb deletion in genomic DNA samples by PCR	
(Samples 12-18)	68
24. Detection of -α ^{3.7} kb deletion in genomic DNA samples by PCR	
(Samples 48-56)	69
25. Detection of -α ^{3.7} kb deletion in genomic DNA samples by PCR	
(Samples 191-196)	70
26. Detection of -α ^{3.7} kb deletion in genomic DNA samples by PCR	
(Samples 292-301)	71
27. The result from hemoglobin electrophoresis (hemoglobin typing)	74
28. The red cell inclusion bodies (2+) in peripheral blood of	
hemoglobin H disease subject $(/-\alpha^{3.7})$	75
29. Acid elution preparation of blood film shows hemoglobin F (4+)	
from cord blood sample.	76

XIII

LIST OF TABLES

TABLES	PAGE
1. Nondeletional mutants that cause α - thalassemia	16
2. Dilutions and O.D. for hemoglobin standard curve	48
3. The results from the detection of alpha 3.7 kb deletion	
in Northern Thai population by PCR technique	67
4. The hematological data of the 34 blood samples of	
α – thalassemia 2 (- $\alpha^{3.7}$) carriers	72
5. Relative frequencies of hemoglobin types in 400 blood samples	73

XIV

ABBREVIATIONS

A adenine

A° angstrom

bp base pair C cytocine

°C degree celsius

cm centimetre dl decilitre

DNA deoxyribonucleic acid

dNTP deoxynucleotide triphosphate

G guanine
Hb hemoglobin

HVR hyper variable region

kb kilobase

LCR locus control region

L litre

mA milliampere

MCV mean corpuscular volume

 $\begin{array}{ccc} min & & minute \\ ml & & millilitre \\ mM & & millimolar \\ \mu g & & microgram \end{array}$

μl microlitre
μM micromolar

MW molecular weight

nm nanometre
Hct hematocrit

OD optical density

OF osmotic fragility

PCR polymerase chain reaction

rpm revolution per minute

RBC red blood cell

sec second

T thymine

Tm melting temperature

U unit

UTR untranslated region

UV ultraviolet V voltage