CONTENTS

	Page
ACKNOWLEDGEMENT	_{\(\sigma\)}
ABSTRACT (ENGLISH)	IV
ABSTRACT (THAI)	y v
LIST OF TABLES	IX
LIST OF FIGURES	X
ABBREVIATIONS	XI
CHAPTER 1 INTRODUCTION	1
1.1 Diphenhydramine hydrochloride	1
1.2 Methods of analysis	2
1.2.1 Titrimetry	2
1.2.2 UV spectrophotometry	3
1.2.3 Colorimetry	4
1.2.4 Fluorometry	4
1.2.5 Gravimetry	4
1.2.6 Electrochemical analysis	5
1.2.7 Chromatography	6
1.2.8 Flow injection analysis	6
1.3 Ion pair formation	7
1.4 Flow injection analysis	9
1.4.1 Theory and principle	9
1.4.2 Basic components of a fia system	10
1.5 Scope and aims of study	11
CHAPTER 2 EXPERIMENTAL	12
2.1 Instruments, apparatus and chemicals	12
2.1.1 Instruments and apparatus	12
2.1.2 Chemicals	13
2.2 Solutions	13

2.3 Procedure	15
2.3.1 Determination of diphenhydramine hydrochloride by	
spectrophotometric flow injection analysis	15
2.3.2 Determination of diphenhydramine hydrochloride by HPLC	16
CHAPTER 3 RESULTS AND DISCUSSION	17
3.1 Determination of diphenhydramine hydrochloride by	
spectrophotometric flow injection analysis	17
3.1.1 Absorption spectra	17
3.1.2 Study of extraction time	20
3.1.3 Manifold	21
3.1.4 Optimization of flow injection determination of	
diphenhydramine hydrochloride	22
3.1.4.1 Effect of carrier solution	22
3.1.4.2 Effect of pH of reagent	24
3.1.4.3 Study of wavelength of measurement	25
3.1.4.4 Effect of mixing coil length	26
3.1.4.5 Effect of sample volume	27
3.1.4.6 Summary of conditions used	28
3.1.4.7 Calibration curve and detection limit	28
3.1.4.8 Precision of FIA system	32
3.1.4.9 Reproducibility and efficiency of the extractions	32
3.1.4.10 Interference studies	32
3.1.4.11 Determination of diphenhydramine hydrochloride	
in pharmaceutical preparations	33
CHAPTER 4 CONCLUSION	36
REFERENCES	38
APPENDIX A Method development for determination of ethanol	
in distilled liquors by near infrared spectrometric	
flow injection analysis	43
APPENDIX B Molar absorptivity evaluation	60

APPENDIX C Detection limit evaluation	61
APPENDIX D Compositions of samples	63
APPENDIX E Test of significance	65
VITA	67

LIST OF TABLES

Table	Page
1.1 Ion-pair extraction methods for the determination of	
diphenhydramine hydrochloride	5
3.1 Absorption of the series of diphenhydramine hydrochl	oride
[0-15.4 ppm] obtained from various conditions	19
3.2 Absorption of the series of diphenhydramine hydrochl	oride
[4.4-22.1 ppm] obtained in various extraction times	21
3.3 Effect of carrier solution on peak height	23
3.4 Effect of pH of reagent on peak height	24
3.5 Study of wavelength of measurement	25
3.6 Effect of mixing coil length on peak height	26
3.7 Effect of sample volume on peak height	27
3.8 Condition used for the determination of diphenhydran	nine
hydrochloride	28
3.9 Calibration curve (5.2-21.0 ppm of diphenhydramine l	hydrochloride,
1.05×10^{-4} M of bromocresol green solution)	29
3.10 Calibration curve (75.1-187.8 ppm of diphenhydrami	ine
hydrochloride, 5.42×10 ⁴ M of bromocresol green solu	tion) 30
3.11 Precision study	32
3.12 Reproducibility and efficiency of the extractions	32
3.13 Effect of the interfering compounds on the determina	tion of
diphenhydramine hydrochloride	33
3.14 Determination of diphenhydramine hydrochloride in	various
pharmaceutical preparations	34
3.15 Effect of pH of samples on determination of diphenh	ydramine
hydrochloride by the proposed FIA method	35

LIST OF FIGURES

Figure	P	Page
1.1 A single-line fia manifold		9
3.1 Absoption spectra of DPH-BCG ion-pai	ir compound in	
chloroform layer		18
3.2 Absorption spectra of the excess bromo	cresol green in aqueous layer	18
3.3 Absorption spectra of the excess bromo-	cresol green in aqueous layer	
after adjusting to be alkaline		19
3.4 Study of various conditions on absorption	on	20
3.5 Study of extraction time		21
3.6 Flow diagram of the system		22
3.7 Effect of carrier solution on peak height		23
3.8 Effect of pH of reagent on peak height		25
3.9 Study of wavelength of measurement		26
3.10 Effect of mixing coil length on peak he	eight	27
3.11 Effect of sample volume on peak heigh	ht	28
3.12 FIA signals for determination of diphe	nhydramine	
hydrochloride (5.2-21.0 ppm)		29
3.13 Calibration curve for 5.2-21.0 ppm of	diphenhydramine	
hydrochloride		30
3.14 FIA signals for determination of diphe	nhydramine	
hydrochloride (75.1-187.8 ppm)		31
3.15 Calibration curve for 75.1-187.8 ppm	of diphenhydramine	
hydrochloride		31

ABBREVIATIONS

λ wavelength

Anh. anharmonicity

aq. aqueous

M molarity

mM millimolar

ppm part per million (microgram per milliliter)

sec second

min minute

mbar millibar

v/v volume by volume

%L.a %labelled amount $\left(\frac{amount found}{labelled amount} \times 100\right)$

sd standard deviation

RSD relative standard deviation

s/n signal to noise ratio

ref. Reference

SPME Solid Phase Microextraction