TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract in English	V
Abstract in Thai	vii
List of tables	xi
List of illustrations	xv
List of abbreviations	xix
Chapter 1. Introduction	1
1.1 The need and safe use of pesticides	. 1
1.2 Study site of interest	3
1.3 Objectives of the present study	5
Chapter 2. Literature Review	. 6
2.1 Pesticide definition and history	6
2.2 Organophosphate and carbamate pesticides	7
2.3 Measurement of ChE activity	15
2.4 Pesticides impact on population and community	18
2.5 Environmental risk assessment	20
2.6 ChE activity as biomarker of exposure to OPs and CAs in aquatic	
ecosystem	24
2.7 Existing information of study site	25

27
27
29
29
30
31
33
34
43
47
47
47
51
51
55
56
57
59

4.2.3 Cluster analysis analysis of toxicological tests and some	
biological components	59
Chapter 5. Discussion	63
5.1 Physico-chemical parameters	63
5.2 Biological components	65
5.3 Chironomids ChE activity in Mae Sa Noi and the control stream	67
5.4 In vitro inhibition test	69
Chapter 6. Conclusion	72
References	75
Appendices	84
Curriculum Vitae	100

LIST OF TABLES

Table		Page
3.1	Concentrations of methyl-parathion for chironomid ChE inhibition	44
	test. In left column were concentrations of methyl-parathion, which	
	they are prepared. After they were added onto test tubes for	
	inhibition testing, they were diluted to concentrations that showed in	
	the right column	
4.1	Physica chamical parameters in Mac Ca Nai and control atmosphere	40
4.1	Physico-chemical parameters in Mae Sa Noi and control streams at 1050, 900 and 700 mAMSL in dry and rainy season in 1999 to cold	48
	season in 2000	
4.2	Comparison of mean physico-chemical parameters between	50
	elevations (1050, 900 and 700 mAMSL), seasons (dry 1999, rainy	·
	1999 and cold 2000) and streams (Mae Sa Noi and control streams)	
4.3	Mean biological components except for indices in Mae Sa Noi and	52
	control streams at 1050, 900 and 700 mAMSL in dry and rainy	
	seasons in 1999 to cold season in 2000	

Table		Page
4.4	Comparison of means of biological components between elevations	54
	(1050, 900 and 700 mAMSL), seasons (dry 1999, rainy 1999 and	
	cold 2000) and streams (Mae Sa Noi and control streams)	
4.5	Pearson correlation coefficient (r) between physico-chemical	56
	parameter; stream velocity and pH and mean total population	
	density and mean chironomid population density	
4.6	Chironomid ChE activity in Mae Sa Noi and the control stream at	58
	elevation 1050, 900 and 700 mAMSL in rainy and cold seasons	
4.7	Comparison of mean chironomid ChE activity between elevations	58
	(1050, 900 and 700 mAMSL), seasons (dry 1999, rainy 1999 and	
	cold 2000) and streams (Mae Sa Noi and control streams)	
4.8	Concentration of methyl-parathion that caused inhibition of	60
, ,	chironomid ChE activity at 25%, 50% and 75% in Mae Sa Noi and	
	the control stream at elevation 1050, 900 and 700 mAMSL in cold	
	season	

Table		Page
4.9	Comparison of methyl-parathion concentration (µM) that cause	60
	inhibition of chironomid ChE activity for 25%, 50% and 75% in	
	vitro condition, chironomid sampling from Mae Sa Noi and the	
	control stream at elevation 1050, 900 and 700 mAMSL in cold	
	season	
A1.	Mean of physico-chemical parameters, biological components,	84
	chironomid ChE activity (µmol/min/mg protein) and concentrations	
	of methyl-parathion causing 50% inhibition of chironomid ChE	
÷	activity (50% inh M-P conc; μ M) in the control stream at elevation	
	1050, 900 and 700 mAMSL (S1050, S900 and S700) respectively	
	and in Mae Sa Noi stream at same elevation (M1050, M900 and	
	M700) in dry 1999, rainy 1999 and cold season 2000	
A2.	Taxa and number of macroinvertebrates sampled with surber	86
	sampler from the control and Mae Sa Noi Streams at 1050, 900 and	
	700 mAMSL in dry season	
A3.	Taxa and number of macroinvertebrated sampled with surber	88
	sampler from the control and Mae Sa Noi Stream at 1050, 900 and	

700 mAMSL in rainy season

Table		Page
A4.	Taxa and number of macroinvertebrates sampled with surber	90
	sampler from the control and Mae Sa Noi Stream at 1050, 900 and	
	700 mAMSL in cold season	
A5.	ChE activity (µmol/min/mg), absorbance at 412 nm and protein	92
	content of chironomids sampled from the control and Mae Sa Noi	
	streams at 1050, 900 and 700 mAMSL in rainy season	
A6.	ChE activity (µmol/min/mg), absorbance at 412 nm and protein	93
	content of chironomids sampled from the control and Mae Sa Noi	
	Stream at 1050, 900 and 700 mAMSL in cold season	
A7	ChE activity (µmol/min/mg) at each concentration (µm) of methyl-	94
	parathion (MP), absorbance at 412 nm and protein content of	
	chironomids sampled from the control and Mae Sa Noi Stream at	
	1050, 900 and 700 mAMSL in cold season	
A8	Daily Rainfall (mm) in Chiang Mai province from 1 April 1999 to	97
	29 February 2000. Source: Meteorology Center, Chiang Mai	
A 9	Organophosphates (OPs) and Carbamates (CAs)Pesticides used in	99
	Mae Sa Mai with their properties. Source: Stuetz (1999)	

LIST OF ILLUSTRATIONS

Figure		Page
2.1	Cholinergic nerve impulse transmission in synapsis, nerve endings or	12
	ganglia (Paasivirta, 1991)	
2.2	Parathion metabolism in mammals and insects (Matsumura, 1972)	14
2.3	Reaction of parathion changing to paraoxon in parathion metabolism	14
	(Hassall, 1990)	
2.4	Flow chart shows application of bioindicators to indicate	21
	environmental impact (Modified from: Hellawell (1986), Calow	
	(1993), Nagel (1995))	
3.1	The map of Mae Sa Noi stream and its control stream on Doi Suthep-	28
	Pui mountain, Chiang Mai, Thailand (Source: Royal Thai Survey	
	Department)	
3.2	Flow chart showed processes of chironomid ChE activity	35
	measurement (Modified from: Scaps et al (1997), Seto et al (1997))	

Figure		Page
3.3	Flow chart showed processing of chironomid homogenization	38
	(Modified from: Scaps et al (1997))	
3.4	Flow chart showed processes of chironomid ChE activity	39
	measurement (Modified from: Seto et al (1997))	
2.5		
3.3	Flow chart showed processes of chironomid protein determination	42
3.6	Flow chart showed processing of in vitro Chironomid ChE activity	45
	inhibition test	
3.7	Flow chart showed all processes of chironomid ChE activity measurement and <i>in vitro</i> inhibition test	46
0		
4.15	8 of physics entimed parameters of	51
	each site; G = group	
4.2	Dendrogram show the grouping of macroinvertebrate community of	55
	each site, G = group	
4.3	Dendrogram show the grouning of ChE activities and suscentibility of	∠ 1
		ΟĬ
	·	55 61

Figure	·	Page
4.4	Dendrogram show the grouping of ChE activities, susceptibility, mean	61
	total population density and mean chironomid population density of	
	all sites in cold season	
A 1.	Graph of mean population density (individual/m²) and number of	95
	sample using for selection appropriate replications in	
	macroinvertebrate sampling, Ala and Alb using raw data of	
	population density from MS900 and MS700 respectively	
A2	Graph show ChE activity (µmol/min/mg) at each concentration (µm)	96
	of methyl-parathion, of chironomids sampling from the control and	
	Mae Sa Noi Stream at 1050, 900 and 700 mAMSL in cold season	
A3	Monthly Rainfall (mm) in Chiang Mai province from April 1999 to	98
	February 2000. Source: Meteorology Center, Chiang Mai. Arrows	
	show sampling time of ecological work and chironomids sampling	
A4	Maximum, minimum and mean of air temperature (°C) in Chiang Mai	98
	province from April 1999 to February 2000. Source: Meteorology	
	Center, Chiang Mai. Arrows show sampling time of ecological work	
	and chironomids sampling	

LIST OF ABBREVIATIONS

Aa = Acetic acid

ACEA = Acetyl coenzyme A

ACh = Acetylcholine

AChE = Acetylcholinesterase

AChI = Acetylthiocholine Iodide

BSA = Bovine Serum Albumin

CAs = Carbamate pesticides

Ch = Choline

ChE = Cholinesterase

DTNB = 5,5' dithiobis-(2-nitrobenzoic acid)

FAO = Food and Agricultural Organization

GAP = Good Agricultural Practice

mAMSL = Meters above mean sea level

MRL = Maximum Residue Limit

OCs = Organocholine pesticides

OPs = Organophosphate pesticides

rpm = Revolution per minute

SED = Square Euclidean Distance

SPSS = Statistical Package for Social Science

WHO = World Health Organization