CHAPTER 2

PRELIMINARIES

Consider the equation

$$ty^{(n)}(t) + kty^{(n-1)}(t) = f(t)$$
(2.1)

where f(t) and y(t) are functions in the space \mathcal{D}' of distribution, k is any real number and $n \geq 2$, $t \in (-\infty, \infty)$.

We are finding the solutions of (2.1). Before finding such solutions, the following definition and basic concepts are needed.

2.1 Distribution

Fundamental space of test functions

For p = 0, 1, 2, ... and a compact set $K \subset R$, we use the following standard notation

 $C^p \equiv C^p(R)$: The space of all complex valued functions on R with continuous derivatives at least up to order p.

 $C_0^p \equiv C_0^p(R)$: The subspace of C^p comprising of all functions with compact supports.

 $C_K^p \equiv C_K^p(R)$: The subspace of C_0^p comprising of all functions with supports contained in the same fixed compact subset K of R.

For $p = \infty$ we define

 $C^{\infty} \equiv C^{\infty}(R)$: The space of all complex valued functions on R which have continuous derivative of all order.

 $C_0^{\infty} \equiv C_0^{\infty}(R)$: The subspace of C^{∞} with compact supports.

 $C_K^{\infty} \equiv C_K^{\infty}(R)$: The subspace of C_0^{∞} comprising of all functions with supports contained in the same fixed compact subset K of R.

Definition 2.1.1 We define the space $\mathcal{D}_K \equiv \mathcal{D}_K(R)$ to be space C_K^{∞} and $\mathcal{D} \equiv \mathcal{D}(R)$ to be space C_0^{∞} .

Definition 2.1.2 A functional on vector space \mathcal{D} is a mapping $\mu : \mathcal{D} \to C$ where C is a complex number. For all $\varphi \in \mathcal{D}$, the value of μ acting on φ is denoted by

$$\mu(\varphi)$$
or $\langle \mu, \varphi \rangle \in C$.

We are interested in functionals which are

(a) linearity: that is

$$\langle \mu, \alpha_1 \varphi_1 + \alpha_2 \varphi_2 \rangle = \alpha_1 \langle \mu, \varphi_1 \rangle + \alpha_2 \langle \mu, \varphi_2 \rangle$$

for any scalar α_1 and α_2 , and

(b) continuous in the some sense: μ is said to be a continuous functional on \mathcal{D} if and only if whenever a sequence $(\varphi_n)_{n\in\mathbb{N}}$ converges to zero in \mathcal{D} (in the agreed sense) the corresponding sequence of complex number $(\langle \mu, \varphi \rangle)_{n\in\mathbb{N}}$ converges to zero in the usual sense.

The set of all continuous linear functionals on the linear space \mathcal{D} is denoted by \mathcal{D}' . It forms a linear space in its own right under the natural componentwise definitions on vector addition and multiplication by scalars:

$$\langle \mu + \nu, \varphi \rangle = \langle \mu, \varphi \rangle + \langle \nu, \varphi \rangle$$

 $\langle \alpha \mu, \varphi \rangle = \alpha \langle \mu, \varphi \rangle$

where $\mu, \nu \in \mathcal{D}'$ and α is any scalar. \mathcal{D}' is called the dual space of \mathcal{D} . The function φ is called a testing function and the function μ is called the generalized function or distribution.

Definition 2.1.3 Let $\mu(t)$ be a locally integrable function (i.e., a function that is integrable in the Lebesgue sense over every finite interval) corresponding to $\mu(t)$, we can define a distribution μ through the convergent integral

$$\langle \mu, \varphi \rangle = \langle \mu(t), \varphi(t) \rangle = \int_{-\infty}^{\infty} \mu(t) \varphi(t) dt$$
 (2.1.1)

 $\mu \in \mathcal{D}'$ (Zemanian [2], page 7).

Definition 2.1.4 The distribution that can be generated through the equation (2.1.1) from locally integrable functions is called the regular distribution. A distribution that is not generated by locally integrable function is called a singular distribution.

An example of a singular distribution is the Dirac-delta δ which is defined by the equation

$$\langle \delta, \varphi \rangle = \varphi(0).$$

Definition 2.1.5 The sequence of distribution $\{\mu_k\}_{k=1}^{\infty}$ is said to converge in \mathcal{D}' if, for every φ in \mathcal{D} , the sequence of number $\{\langle \mu_k, \varphi \rangle\}_{k=1}^{\infty}$ converge in the ordinary sense of the convergence of numbers. The limit of $\{\langle \mu_k, \varphi \rangle\}_{k=1}^{\infty}$ which we shall denote by $\langle \mu, \varphi \rangle$ defines a functional μ acting on the space \mathcal{D} . In this case we shall also say that μ is the limit in \mathcal{D}' of $\{\mu_k\}_{k=1}^{\infty}$ and we write $\lim_{k \to \infty} \mu_k = \mu$.

Theorem 2.1.1 If a sequence of distributions $\{\mu_k\}_{k=1}^{\infty}$ converges in \mathcal{D}' to the functional μ , then μ is also a distribution. In other words, the space \mathcal{D}' is closed under convergence.

Proof: See [2] page 37.

Definition 2.1.6 (Differentiation of Distributions)

The first derivative $\mu'(t)$ of any distribution $\mu(t)$, where t is one-dimensional, is the functional on \mathcal{D} given by

$$\langle \mu'(t), \varphi(t) \rangle = \langle \mu(t), -\varphi'(t) \rangle \quad \varphi \in \mathcal{D}.$$

Example

(1) The first derivative of the Dirac-delta functional $\delta^{(1)}$ denoted by the equation

$$\langle \delta', \varphi \rangle = \langle \delta, -\varphi' \rangle = -\varphi'(0).$$

(2) We define

$$H(t) = \begin{cases} 1 & \text{for } 0 < t \\ 0 & \text{for } 0 > t \end{cases}$$

H(t) is called the Heaviside function and H is a locally integrable function

$$\langle H'(t), \varphi \rangle = \langle H, -\varphi' \rangle$$

$$= -\int_{-\infty}^{\infty} H(t)\varphi'(t)dt$$

$$= -\int_{0}^{\infty} \varphi'(t)dt$$

$$= -(\varphi(t))_{0}^{\infty}$$

$$= -\varphi(\infty) + \varphi(0) = \varphi(0) = \langle \delta, \varphi \rangle.$$

Thus $H' = \delta$.

Definition 2.1.7 (The multiplication of distribution by the infinitely differentiable functions)

Let $\mu(t)$ be an infinitely differentiable function, define

$$\langle \mu(t)T, \varphi(t) \rangle = \langle T, \mu(t)\varphi(t) \rangle$$
 (2.1.2)

for all $\varphi \in \mathcal{D}$.

Theorem 2.1.2.

- 1. $\mu(t)\delta = \mu(0)\delta$, μ is infinitely differentiable
- $2. \ t\delta(t)=0$

Proof:

1.
$$\langle \mu(t)\delta, \varphi(t) \rangle = \langle \delta, \mu(t)\varphi(t) \rangle$$
 by (2.1.2)

$$= \mu(0)\varphi(0)$$

$$= \mu(0)\langle \delta, \varphi(t) \rangle$$

$$= \langle \mu(0)\delta, \varphi(t) \rangle.$$

Thus $\mu(t)\delta = \mu(0)\delta$ for all $\varphi \in \mathcal{D}$.

2.
$$\langle t\delta, \varphi(t) \rangle = \langle \delta, t\varphi(t) \rangle$$
, for all $\varphi \in \mathcal{D}$
= $0\varphi(0) = 0 = \langle 0, \varphi(t) \rangle$.

Thus $t\delta = 0$.

Theorem 2.1.3 A necessary and sufficient condition for a distribution $\mu(t)$ defined over R to satisfy the equation

$$t^m \mu(t) = 0 \tag{2.1.3}$$

where m is a positive integer, is that $\mu(t)$ be a linear combination of the Dirac-delta functional and its derivatives of order not greater than m-1. That is

$$\mu = \sum_{k=0}^{m-1} c_k \delta^{(k)} \tag{2.1.4}$$

where the c_r are arbitary constants.

Proof: That (2.1.4) is necessary for (2.1.3) to hold is obvious. To prove the sufficiency of (2.1.3), we need the following Lemmas.

Lemma 2.1.1 For a testing function $\chi(t)$ in \mathcal{D} to have the form

$$\chi(t) = t^m \varphi(t) \quad \varphi(t) \in \mathcal{D} \tag{2.1.5}$$

it is necessary and sufficient that

$$\chi^{(k)} = 0 k = 0, 1, ..., m - 1$$
 (2.1.6)

Proof: See [2] page 81.

Lemma 2.1.2 Let $\lambda(t)$ be a fixed testing function in \mathcal{D} such that $\lambda(0) = 1$ and $\lambda^{(k)}(0) = 0$ (k = 1, 2, ..., m - 1). Then any testing function $\psi(t)$ in \mathcal{D} can be uniquely decomposed according to

$$\psi(t) = \lambda \sum_{k=0}^{m-1} \frac{1}{k!} \psi^{(k)}(0) t^k + \chi(t)$$

where $\chi(t)$ is in \mathcal{D} and satisfies (2.1.6).

Proof: See [2] page 82.

Proof of Theorem 2.1.3 Let $t^m \mu(t) = 0$, then for any $\lambda(t)$ of the form given in Lemma 2.1.1,

$$\langle \mu, \chi \rangle = \langle \mu(t), t^m \varphi(t) \rangle = \langle t^m \mu(t), \varphi(t) \rangle = 0.$$
 (2.1.7)

Thus, for every ψ in \mathcal{D} , we have by Lemma 2.1.2 and by (2.1.7) that

$$\langle \mu, \psi \rangle = \langle \mu(t), \lambda(t) \sum_{k=0}^{m-1} \frac{1}{k!} \psi^{(k)}(0) t^k + \chi(t) \rangle$$

$$= \langle \mu(t), \lambda(t) \sum_{k=0}^{m-1} \frac{1}{k!} \psi^{(k)}(0) t^k \rangle + \langle \mu(t), \chi(t) \rangle$$

$$= \sum_{k=0}^{m-1} \frac{1}{k!} \psi^{(k)}(0) \langle \mu(t), \lambda(t) t^k \rangle.$$

Define the constant c_k by

$$c_k = \frac{1}{k!} (-1)^k \langle \mu(t), t^k \lambda(t) \rangle.$$

Since $\psi^{(k)}(0) = (-1)^k \langle \delta^{(k)}, \psi(t) \rangle$, we have

$$\langle \mu, \psi
angle = \langle \sum_{k=0}^{m-1} c_k \delta^{(k)}, \psi(t)
angle.$$

Hence
$$\mu(t) = \sum_{k=0}^{m-1} c_k \delta^{(k)}$$
.

Theorem 2.1.4 Let μ be a distribution that is defined over some neighborhood of a fixed finite closed interval I in R. There exists a nonnegative integer r and a finite positive constant C such that for every φ in \mathcal{D}_I

$$|\langle \mu, \varphi \rangle| \le C \sup_{t} |\varphi^{(r)}(t)|.$$
 (2.1.8)

Both C and r depend in general upon μ and I.

Proof: Suppose that for a given μ no relatation such as (2.1.8) can hold. Therefore for any positive integer k there exists a testing function φ_k in \mathcal{D}_I such that

$$|\langle \mu, \varphi_k \rangle| > k(b-a)^k \sup_{t \in I} |\varphi_k^{(k)}(t)|$$

$$= k\gamma_k(\varphi_k). \tag{2.1.9}$$

where $\gamma_k(\varphi_k) = (b-a)^k \sup_{t \in I} |\varphi_k^{(k)}(t)|$.

Let $\theta_k = \frac{\varphi_k}{k\gamma_k(\varphi_k)}$, then $\theta_k \in \mathcal{D}_I$.

Let m be some nonnegative integer. For $k \geq m$,

$$\gamma_m(\theta_k) \le \gamma_k(\theta_k) = \frac{\gamma_k(\varphi_k)}{k\gamma_k(\varphi_k)} = \frac{1}{k}.$$

Thus $\gamma_k(\theta_k) \to 0$ as $k \to \infty$, consequently $\theta_k \to 0$ in \mathcal{D}_I .

Since μ is a continuous functional on \mathcal{D}_I , we have $\langle \mu, \theta_k \rangle \to 0$ as $k \to \infty$. But (2.1.9) implies that

$$\begin{aligned} |\langle \mu, \theta_k \rangle| &= \frac{|\langle \mu, \varphi_k \rangle|}{k \gamma_k (\varphi_k)} \\ &> \frac{k \gamma_k (\varphi_k)}{k \gamma_k (\varphi_k)} = 1. \end{aligned}$$

Thus contradiction.

Definition 2.1.8 (The space S of testing functions of rapid descent)

Let S is the collection of all complex valued function φ on R which are infinitely differentiable and $\varphi(t)$ in S satisfies the infinite set of inequalities

$$|t^m \varphi^{(k)}(t)| \le C_{mk} - \infty < t < \infty$$

where m and k run through all nonnegative integers. Here the C_{mk} are constants (with respect to t) which depend upon m and k.

Note \mathcal{D} is a proper subspace of \mathcal{S} .

Definition 2.1.9 (Convergence in S)

A sequence of functions $\{\varphi_k(t)\}_{k=1}^{\infty}$ is said to converge in S if every function $\varphi_k(t)$ is in S and if, for each nonnegative m and k, the sequence $\{t^m\varphi_k(t)\}_{k=1}^{\infty}$ converge uniformly in R.

Theorem 2.1.5 The space \mathcal{D} is dense in the space \mathcal{S} in the sense that for each φ in \mathcal{S} there exists a sequence $\{\varphi_k(t)\}_{k=1}^{\infty}$ with every $\varphi_k(t)$ in \mathcal{D} which converges in \mathcal{S} to $\varphi(t)$.

Definition 2.1.10 (The space S' of distribution of slow growth)

A distribution μ is said to be of slow growth if it is a continuous linear functional on the space S of testing functions of rapid descent(such distributions are also called tempered distributions). That is, a distribution μ of slow growth is a rule that assigns a number $\langle \mu, \varphi \rangle$ to each φ in S in such a way that the following condition are fulfilled.

Linearity If φ_1 and φ_2 are in S and if any numbers α and β , then

$$\langle \mu, \alpha \varphi_1 + \beta \varphi_2 \rangle = \alpha \langle \mu, \varphi_1 \rangle + \beta \langle \mu, \varphi_2 \rangle.$$

Continuity If $\{\varphi_k\}_{k=1}^{\infty}$ is any sequence that converges in S to zero, then

$$\lim_{k\to 0} \langle \mu, \varphi_k \rangle = 0.$$

The space of all distribution of slow growth is denoted by \mathcal{S}' . \mathcal{S}' is also called the dual space of \mathcal{S} .

Note S' is a proper subspace of D'.

Theorem 2.1.6 If $\mu(\tau)$ is in \mathcal{S}'_{τ} and $\varphi(t,\tau)$ is in $\mathcal{S}_{t,\tau}$ then

$$\psi(t) = \langle \mu(\tau), \varphi(t, \tau) \rangle$$
 is in \mathcal{S}_t and $\psi^{(k)}(t) = \langle \mu(\tau), \varphi^{(k)}(t, \tau) \rangle$

where S_t , S_τ and $S_{t,\tau}$ is denoted the spaces of testing functions of rapid descent defined over the space of variable t, τ and (t,τ) respectively.

Proof: See [2] page 112.

2.2 Convolution

Definition 2.2.1 (Direct product)

Let $\mu(t)$ be a distribution in \mathcal{D}'_t and $\nu(\tau)$ be a distribution in \mathcal{D}'_{τ} . If $\varphi(t,\tau)$ is an element of $\mathcal{D}_{t,\tau}$, we define the direct product

$$\langle \mu(t) \times \nu(\tau), \varphi(t,\tau) \rangle = \langle \mu(t), \langle \nu(\tau), \varphi(t,\tau) \rangle \rangle.$$

Theorem 2.2.1 The direct product $\mu(t) \times \nu(\tau)$ of two distributions $\mu(t)$ and $\nu(\tau)$ is a distribution in $\mathcal{D}'_{t,\tau}$.

Theorem 2.2.2 The direct product of two distributions of slow growth is another distribution of slow growth.

That is if $\mu(t)$ is in \mathcal{S}'_t and $\nu(\tau)$ is in \mathcal{S}'_{τ} then $\mu(t) \times \nu_{\tau}$ is in $\mathcal{S}'_{t,\tau}$.

Proof: See [2] page 116.

Example 2.2.1 The direct product of the delta function over R with it self yields the delta functional over R^2 . That is

$$\delta(t) \times \delta(\tau) = \delta(t, \tau),$$

because with φ in $\mathcal{D}_{t,\tau}$

$$\begin{split} \langle \delta(t) \times \delta(\tau), \varphi(t, \tau) \rangle &= \langle \delta(t), \langle \delta(\tau), \varphi(t, \tau) \rangle \rangle \\ &= \langle \delta(t), \varphi(t, 0) \rangle = \varphi(0, 0) \\ &= \langle \delta(t, \tau), \varphi(t, \tau) \rangle. \end{split}$$

Theorem 2.2.3 The support of the direct product of two distribution is the cartesian product of their supports. That is, if Ω_{μ} is the support of the distribution $\mu(t)$ and Ω_{ν} is the support of the distribution $\nu(\tau)$, the support of $\mu(t) \times \nu(\tau)$ is the set $\Omega_{\mu} \times \Omega_{\nu}$.

Proof: See [2] page 118.

Lemma 2.2.1 The space of all testing functions of the form

$$\varphi(t,\tau) = \sum_{k} \psi_k(t) \theta_k(\tau)$$

where the $\psi_k(t)$ are in \mathcal{D}_t , the $\theta_k(\tau)$ are in \mathcal{D}_{τ} and the summation has a finite number of terms, is dense in $\mathcal{D}_{t,\tau}$.

Theorem 2.2.4 The direct product of two distribution in commutative

$$\mu(t) \times \nu(\tau) = \nu(\tau) \times \mu(t).$$

That is, for every testing function $\varphi(t,\tau)$ in $\mathcal{D}_{t,\tau}$, we have

$$\langle \mu(t), \langle \nu(\tau), \varphi(t, \tau) \rangle \rangle = \langle \nu(\tau), \langle \mu(t), \varphi(t, \tau) \rangle \rangle.$$
 (2.2.1)

Proof: See [2] page 120.

Corollary 2.2.1 The equation (2.2.1) still holds when $\mu(t)$ is in \mathcal{S}'_t , $\nu(\tau)$ is in \mathcal{S}'_τ , and $\varphi(t,\tau)$ is in $\mathcal{S}_{t,\tau}$.

Defintion 2.2.2 Let $\mu(t)$ and $\nu(t)$ be two continuous functions with bounded support. A convolution between $\mu(t)$ and $\nu(t)$ is denoted by $\mu(t) * \nu(t)$ and defined by

 $\mu(t) * \nu(t) = \int_{-\infty}^{\infty} \mu(t) \nu(t - \tau) d\tau.$

The above equation cannot be used when μ and ν are arbitary distribution because, for one reason, two distribution cannot be multiplies in general. Let φ be in \mathcal{D} , we may write

 $\langle \mu * \nu, \varphi \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mu(\tau) \nu(t - \tau) \varphi(t) d\tau dt.$

By applying the change of variable $\tau = x$ and t = x + y

$$\langle \mu *
u, \varphi \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mu(x) \nu(y) \varphi(x+y) dx dy.$$

The last expression has a form that is similar to that of the direct product of two regular distribution. Thus

$$\langle \mu * \nu, \varphi \rangle = \langle \mu(t) \times \nu(\tau), \varphi(t+\tau) \rangle$$

$$= \langle \mu(t), \langle \nu(\tau), \varphi(t+\tau) \rangle \rangle. \tag{2.2.2}$$

However, a problem arises in this case. Even though the function $\varphi(t+\tau)$ is infinitely smooth, it is not a testing function, since its support is not bounded in the (t,τ) plane. If the support of $\mu(t) \times \nu(\tau)$ intersects the support of $\varphi(t+\tau)$ in a bounded set, say Ω , we can replace the right hand side of (2.2.2) by

$$\langle \mu(t) \times \nu(\tau), \lambda(t, \tau)\varphi(t+\tau) \rangle$$
 (2.2.3)

where $\lambda(t,\tau)$ is some testing function in $\mathcal{D}_{t,\tau}$ that is equal to one over some neighborhood of Ω . Thus $\lambda(t,\tau)\varphi(t+\tau) \in \mathcal{D}_{t,\tau}$.

We have yet to determine under what conditions the intersection of the support of $\mu(t) \times \nu(\tau)$ and $\varphi(t+\tau)$ is always bounded for all φ in \mathcal{D} and whether $\mu * \nu$ is a distribution.

Theorem 2.2.5 Let μ and ν be two distribution over R and let their convolution $\mu * \nu$ be defined by (2.2.2), when the right-hand side of (2.2.2) is understood to be (2.2.3). Then, $\mu * \nu$ will exist as a distribution over R under any one of the following conditions:

- a. Either μ or ν has a bounded support.
- b. Both μ and ν have supports bounded on the left [i.e.,there exists some constant T_1 such that f(t) = g(t) = 0 for $t < T_1$].
- c. Both μ and ν have supports bounded on the right [i.e.,there exists some constant T_2 such that f(t) = g(t) = 0 for $t > T_2$]. **Proof:** See [2] page 124.

Corallary 2.2.1 The convolution of two distribution is commutative $\mu * \nu = \nu * \mu$. That is, for every φ in \mathcal{D} ,

$$\langle \mu(t), \langle \nu(\tau), \varphi(t+\tau) \rangle \rangle = \langle \nu(\tau), \langle \mu(t), \varphi(t+\tau) \rangle \rangle.$$

Theorem 2.2.6 Let Ω_{μ} and Ω_{ν} be the respective supports of the distributions μ and ν , which are defined over R, and let $\Omega_{\mu} + \Omega_{\nu}$ be the set in R each of whose points can be written as the sum of a point in Ω_{μ} and a point in Ω_{ν} . Then, the support of $\mu * \nu$ is contained in $\Omega_{\mu} + \Omega_{\nu}$.

Corollary 2.2.2 If both of the supports of the distribution μ and ν are either (a) bounded or (b) bounded on the left or (c) bounded on the right, then the support of $\mu*\nu$ is respectively either (a) bounded or (b) bounded on the left or (c) bounded on the right.

Example 2.2.2 Given $\mu \in \mathcal{D}'$ be any distribution, then

- 1. $\delta * \mu = \mu$
- 2. $\delta^{(m)} * \mu = \mu^{(m)}$ where $\delta^{(m)}$ and $\mu^{(m)}$ are the distributions with m-derivatives.

Proof 1.
$$\langle (\delta * \mu)(t), \varphi(t) \rangle = \langle \mu(t), \langle \delta(r), \varphi(t+r) \rangle \rangle$$

= $\langle \mu(t), \varphi(t) \rangle$.

Thus $\delta * \mu = \mu$.

2.
$$\langle (\delta^{(m)} * \mu)(t), \varphi(t) \rangle = \langle \mu(t), \langle \delta^{(m)}(r), \varphi(t+r) \rangle \rangle$$

$$= \langle \mu(t), \langle \delta(r), (-1)^m \varphi^{(m)}(t+r) \rangle \rangle$$

$$= \langle \mu(t), (-1)^m \varphi^{(m)}(t) \rangle$$

$$= \langle \mu^{(m)}(t), \varphi(t) \rangle.$$

Thus $\delta^{(m)} * \mu = \mu^{(m)}$.

Definition 2.2.3 (Convolution equation)

Consider a convolution equation in the form

$$f * u = g \tag{2.2.4}$$

when f and g are known distributions and u is an unknown distribution. We may seek all possible solutions u in \mathcal{D}' . We want (2.2.4) has a unique solution u, thus we restrict the convolution to some convolution algebra.

A space \mathcal{A}' of distribution is said to be a convolution algebra if it possesses the following properties:

- 1. \mathcal{A}' is a linear space.
- 2. \mathcal{A}' is closed under convolution.
- 3. Convolution is associative for any three distributions in \mathcal{A}' .

Theorem 2.2.7 Let an equation f * u = g where $f, g \in \mathcal{D}'_R$ (the space of distribution whose support bounded from the left or sometimes call the right side distribution). A necessary and sufficient condition for the equation to have at least one solution in \mathcal{D}'_R for every g in \mathcal{D}'_R is that f possess an inverse f^{*-1} in \mathcal{D}'_R . When f does possess an inverse in \mathcal{D}'_R , this inverse is unique and the equation possesses a unique solution in \mathcal{D}'_R , given by

$$u = \delta * u = f^{*-1} * f * u = f^{*-1} * g.$$
 (2.2.5)

Proof: If the equation f * u = g has at least one solution in \mathcal{D}'_R , then one of the solution of the equation with $g = \delta$ will be one of the inverse of f. Conversely, if f has an inverse in \mathcal{D}'_R , the equation (2.2.5) will be one of the solution of the equation.

Finally, we will show the equation possesses a unique solution in \mathcal{D}'_R . For if u and v are both in \mathcal{D}'_R and are solutions, then

$$f * u = g$$
 and $f * v = g$.

On the convolving all terms by this particular inverse f^{*-1} , we get

$$u = f^{*-1} * g$$
 and $v = f^{*-1} * g$.

Since convolution is a single-valued operation, u = v.

This also implies that f^{*-1} is unique in \mathcal{D}'_R .

Theorem 2.2.8 If h and j are in \mathcal{D}'_R and possess inverses in \mathcal{D}'_R , then

$$(h*j)^{*-1} = h^{*-1}*j^{*-1}. (2.2.6)$$

Proof: Since convolution in \mathcal{D}'_R is associative and commutative,

$$(h*j)*(h^{*-1}*j^{*-1}) = (h*h^{*-1})*(j*j^{*-1}) = \delta*\delta = \delta.$$

This establishes (2.2.6).

Definition 2.2.4 Let L denote the general differential operator of the form

$$L = a_n \frac{d^n}{dt^n} + a_{n-1} \frac{d^{n-1}}{dt^{n-1}} + \dots + a_1 \frac{d}{dt} + a_0$$
 (2.2.7)

when the $a_i (i = 0, 1, 2, ..., n)$ are constants, $a_n \neq 0$, and $n \geq 1$. We wish to solve the equation

$$Lu = g (2.2.8)$$

where g is a known distribution in \mathcal{D}'_R and u is unknown but also required to be in \mathcal{D}'_R . The equation (2.2.8) may be written as a convolution equation:

$$(L\delta) * u = g \tag{2.2.9}$$

$$L\delta = a_n \delta^{(n)} + a_{n-1} \delta^{(n-1)} + \dots + a_1 \delta^{(1)} + a_0 \delta.$$
 (2.2.10)

Thus, the technique developed for the convolution algebra \mathcal{D}'_R may be applied here and, as we have shown the problem becomes simply that of finding in \mathcal{D}'_R an inverse for $L\delta$.

Theorem 2.2.9 The distribution $L\delta$, given by the equation (2.2.10) with the $a_i (i = 1, 2, ..., n; n \ge 1)$ being constants and $a_n \ne 0$, has an inverse in \mathcal{D}'_R . This inverse is $H(t)\phi(t)$, where $\phi(t)$ is that classical solution of the homogeneous equation Lu = 0 which satisfies the initial conditions

$$\phi(0) = \phi^{(1)}(0) = \dots = \phi^{(n-2)}(0) = 0$$
 (2.2.11)

$$\phi^{(n-1)}(0) = \frac{1}{a_n}.$$

 $H(t)\phi(t)$ is called the Green's function for L.

Proof: We have

$$\langle (H(x)\phi(x))', \varphi(x) \rangle = \langle (H(x)\phi(x)), -\varphi'(x) \rangle$$

$$= \langle H(x), -\phi(x)\varphi'(x) \rangle$$

$$= \int_0^\infty (-\phi(x))\varphi'(x)dx$$

$$= [-\phi(x)\varphi(x)]_0^\infty + \int_0^\infty \varphi(x)\phi'(x)dx$$

$$= \phi(0)\varphi(0) + \langle H(x)\phi'(x), \varphi(x) \rangle$$

$$= \langle \phi(0)\delta, \varphi(x) \rangle + \langle H(x)\phi'(x), \varphi(x) \rangle$$

$$= \langle \phi(0)\delta + H(x)\phi'(x), \varphi(x) \rangle.$$

Thus $(H(x)\phi(x))' = H(x)\phi'(x) + \phi(0)\delta$. Similarly

$$(H(x)\phi(x))'' = H(x)\phi''(x) + \phi'(0)\delta + \phi(0)\delta'$$

$$(H(x)\phi(x))^{(n-1)} = H(x)\phi^{(n-1)}(x) + \phi^{(n-2)}(0)\delta + \dots + \phi(0)\delta^{(n-2)}$$

$$(H(x)\phi(x))^{(n)} = H(x)\phi^{(n)}(x) + \phi^{(n-1)}(0)\delta + \dots + \phi(0)\delta^{(n-1)}.$$

By the initial condition, we obtain

$$(H(x)\phi(x))^{(\nu)} = H(x)\phi^{(\nu)}(x) \qquad \nu = 1, 2, ..., n-1$$
$$(H(x)\phi(x))^{(n)} = H(x)\phi^{(n)}(x) + \frac{1}{a_n}\delta.$$

Thus $(L\delta)*(H(x)\phi(x)) = L(H(x)\phi(x)) = H(x)L\phi(x) + \delta$. Since $L\phi(x) = 0$, hence $(L\delta)*(H(x)\phi(x)) = \delta$. It follows that $(L\delta)^{*-1} = H(x)\phi(x)$.

Example 2.2.3 Find the particular solution of the equation

$$y''(x) + 4y(x) = x, \quad 0 \le x \le \infty$$

Now consider y''(x) + 4y(x) = 0. The classical solution is

$$\phi(x) = A\cos 2x + B\sin 2x$$

under the condition $\phi(0) = 0$, $\phi'(0) = 1$.

Thus A = 0, $B = \frac{1}{2}$. $\phi(x) = \frac{1}{2}\sin 2x$.

Let $y(x) \in \mathcal{D}_R'$, then the particular solution is $y(x) = (H(x)\phi(x)) * x$. Thus

$$y(x) = \int_{-\infty}^{\infty} H(r)\phi(r)(x-r)dr$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} H(r)\sin 2r(x-r)dr$$

$$= \frac{1}{2} [x \int_{0}^{x} \sin 2r dr] - \frac{1}{2} \int_{0}^{x} r \sin 2r dr$$

$$= -\frac{1}{4} x \cos 2x + \frac{1}{4} x + \frac{1}{4} x \cos 2x - \frac{1}{8} \sin 2x$$

$$= -\frac{1}{8} \sin 2x + \frac{1}{4} x.$$

Theorem 2.2.10 Let Lu = g be a linear differential equation with constant coefficients, where L is given by (2.2.5) and g is a continuous function for $t \ge t_0$. The solution to Lu = g that satisfies

$$u(t_0) = u_0, u^{(1)}(t_0) = u_1, ..., u^{(n-1)}(t_0) = u_{n-1}$$

is given by

$$u(t) = \int_{t_0}^t \varphi(t-\tau)g(\tau)d\tau + \sum_{i=0}^{n-1} b_i \varphi^{(i)}(t-t_0)$$

where $\varphi(t)$ is the classical solution to the homogeneous equation Lu=0 that satisfies the initial conditions (2.2.11) and

$$b_i = a_{i+1}u_0 + a_{i+1}u_1 + \cdots + a_nu_{n-i-1}.$$

Proof: See [2] page 162.

2.3 Laplace Transform of Distribution

Definition 2.3.1 Let f(t) be a locally integrable function that satisfies conditions A:

- 1. f(t) = 0 for $-\infty < t < T$.
- 2. There exists a real number c such that $f(t)e^{-ct}$ is absolutely integrable over $-\infty < t < \infty$.

Let s denote the complex variable $s = \sigma + i\omega$. The Laplace transformation is an operation \mathcal{L} that assigns a function F(s) of the complex variable s to each locally integrable function f(t) that satisfies conditions A. \mathcal{L} is defined by

$$\mathcal{L}f(t) = F(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$
 (2.3.1)

The function F(s) is called the Laplace transform of f(t).

The fact that f(t) = 0 for $-\infty < t < T$ allows us to write

$$\mathcal{L}f(t) = F(s) = \int_{T}^{\infty} f(t)e^{-st}dt$$
 (2.3.2)

We shall refer to (2.3.2) as a right-side Laplace transform.

(2.3.2) may be broken up into the sum of two integrals

$$\mathcal{L}f(t) = \mathcal{L}_B f(t) + \mathcal{L}_+ f(t). \tag{2.3.3}$$

Here,
$$\mathcal{L}_B f(t) = F_B(s) = \int_T^0 f(t) e^{-st} dt.$$
 (2.3.4)

$$\mathcal{L}_{+}f(t) = F_{+}(s) = \int_{0}^{\infty} f(t)e^{-st}dt.$$
 (2.3.5)

The second part of condition A implies that (2.3.4) converges absolutely for every (finite) value of s. Furthermore, since

$$|f(t)e^{-st}| \le |f(t)e^{-ct}|$$

whenever t > 0 and Re $s \ge c$, (2.3.5) converges absolutely for all s in the half plane Re $s \ge c$. We can therefore conclude that (2.3.2) converges absolutely for all s in this half-plane.

The greatest lower bound σ_a on all possible values of c, for which the second of condition A holds, is called the abscissa of absolute convergence and the open half-plane Res > σ_a is called the half-plane (or region) of absolute convergence for the Laplace transform (2.3.2). We show refer to a half-plane that is bounded on the left but extends infinitely to the right as a right-sided half-plane. Note that the Laplace transform of a right sided function that satisfies conditions A has as its region of convergence either a right-sided half-plane or the entire s plane.

Theorem 2.3.1 Let f(t) be a continuous function that satisfies condition A and let σ_a be the abscissa of absolute convergence for $\mathcal{L}f(t) = F(s)$. Then, F(s) is an analytic function for Re $s > \sigma_a$ and

$$F^{(k)}(s) = \int_{T}^{\infty} (-t)^k f(t) e^{-st} dt \quad \text{Re } s > \sigma_a$$
 (2.3.6)

Theorem 2.3.2 Let the locally integrable function f(t) satisfy conditions A, let its ordinary first derivative f'(t) exists and be continuous throughout some open interval a < t < b, and let σ_a be the abscissa of absolute convergence for $\mathcal{L}f(t) = F(s)$. For each real constant c greater than σ_a and for a < t < b,

$$f(t) = \mathcal{L}^{-1}F(s) = \frac{1}{2\pi i} \lim_{y \to \infty} \int_{c-iy}^{c+iy} F(s)e^{st}ds$$
 (2.3.7)

where the path of integration is along the vertical line s = c + iy. **Proof:** See [2] page 216.

Example 2.3.1 Let us establish that

$$\mathcal{L}\left[\frac{t^k}{k!}H(t)\right] = \frac{1}{s^{k+1}}, \quad \text{Re } s > 0 \; ; k = 0, 1, 2, \dots$$
 (2.3.8)

where

$$H(t) = \begin{cases} 1 & \text{if } o \le t < \infty \\ 0 & \text{if } -\infty < t < 0 \end{cases}$$

a heaviside function.

Proof: By Mathematical induction, for k = 0, $\mathcal{L}(1) = \frac{1}{s}$

Now, let k be a positive integer. Through an integration by parts, we may write

$$\int_0^\infty \frac{t^k}{k!} e^{-st} dt = \frac{1}{s} \int_0^\infty \frac{t^{k-1}}{(k-1)!} e^{-st} dt$$
$$= \frac{1}{s} \mathcal{L} \left[\frac{t^{k-1}}{(k-1)!} H(t) \right] \quad \text{Re } s > 0.$$

According to the last expression, (2.3.8) will certainly hold so long as it holds when k is replace by k-1. This prove (2.3.8).

Definition 2.3.2 The Laplace transforms of right-side distributions, recall the Laplace transform G(s) of a locally integrable function g(t) that satisfies the conditions of definition 2.3.1

$$G(s) = \mathcal{L}g(t) = \int_{T}^{\infty} g(t)e^{-st}dt$$
 , Re $s > \sigma_a$.

This relation may be written in the form

$$G(s) = \langle g(t), e^{-st} \rangle.$$

Now we try to define the Laplace transform of right-side distributions. Let f(t) be a distribution whose support is bounded on the left and there exists a real number c for which $e^{-ct}f(t)$ is a Tempered Distribution. Define

$$F(s) = \mathcal{L}f(t) = \langle e^{-ct}f(t), \lambda(t)e^{-(s-c)t} \rangle$$
 (2.3.9)

where $\lambda(t)$ is any infinitely differentiable function with bounded support on the left, which equal to one over the neighborhood of the support of f(t). For Re s > c, $\lambda(t)e^{-(s-c)t}$ is a testing function in the space S of testing functions of rapid descent and that $e^{-ct}f(t)$ is in the space S' of Tempered Distributions.

(2.3.9) can be deduced to

$$F(s) = \mathcal{L}f(t) = \langle f(t), e^{-st} \rangle. \tag{2.3.10}$$

Now F(s) is a function of s defined over the right-sided half-plane Re s > c.

Example 2.3.2 The following formulas are the consequence of definition 2.3.2

- 1. $\mathcal{L}\delta = 1$ for $-\infty < \text{Re } s < \infty$ where δ is Dirac-delta functional whose support concentrated on a single point.
- 2. $\mathcal{L}\delta(t-\tau) = e^{-s\tau}$ for $-\infty < \text{Re } s < \infty$ and τ is a real constant.
- 3. $\mathcal{L}\delta^{(k)} = s^k$ for $-\infty < \text{Re } s < \infty$ and k is a positive integer.
- 4. $\mathcal{L}\delta^{(k)}(t-\tau) = s^k e^{-s\tau}$ for $-\infty < \text{Re } s < \infty$.
- 5. $\mathcal{L}(t^k f(t)) = (-1)^k F^{(k)}(s)$ for Re $s > \sigma$, where f(t) is a distribution in \mathcal{D}'_R .
- 6. $\mathcal{L}f^{(k)}(t) = s^k F(s)$ for Re $s > \sigma$, where f(t) is a distribution in \mathcal{D}'_R .