CHAPTER 2
PRELIMIN ARIES

Consider the equation
ty™ (t) + kty™ V() = £(2) (2.1)

where f(t) and y(t) are functions in the space D’ of distribution, k is any real
number and n > 2, ¢ € (—o0,00).
We are finding the solutions of (2.1). Before finding such solutions, the

following definition and basic concepts are needed.

2.1 Distribution

Fundamental space of test functions

For p=0,1,2,... and a compact set K C R, we use the following standard

notation

CP = CP(R).: The space of all complex valued functions on R with continuous
derivatives at least up to order p.
CP = CE(R) : The subspace of CP comprising of all functions with compact
supports.
C% = C%(R) : The subspace of C§ comprising of all functions with supports

contained in the same fixed compact subset K of R.

For p = co we define

C® = C*®(R) : The space of all complex valued functions on R which have
continuous derivative of all order.

CS° = C{°(R) : The subspace of C* with compact supports.

C% = C2(R) :The subspace of C§° comprising of all functions with supports

contained in the same fixed compact subset K of R.

Definition 2.1.1 We define the space Dx = Dk (R) to be space CF and D =
D(R) to be space C§°.
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Definition 2.1.2 A functional on vector space D is a mapping p : D — C where
C is a complex number. For all ¢ € D, the value of y acting on ¢ is denoted by

p(p)or{u, ) € C.

We are interested in functionals which are

(a) linearity: that is

(Ju‘a a1 + a’2§02> =0 (,U., (Pl) + o (Ju’? 902>

for any scalar «; and ag, and
(b) continuous in the some sense: g is said to be a continuous fuentional on D if
and only if whenever a sequence (¢n)nen converges to zero in D (in the agreed
sense) the corresponding sequence of complex number ({4, ©))nen converges to
zero in the usual sense.

The set of all continuous linear functionals on the linear space D is denoted
by D'. It forms a linear space in its own right under the natural componentwise

definitions on vector addition and multiplication by scalars:

(B+rv,0) =0+,
(ap, ) = o{p, @)

where p, v € D' and « is any scalar. D’ is called the dual space of D. The function
¢ is called a testing function and the function p is called the generalized function

or distribution.

Definition 2.1.3 Let u(t) be a locally integrable function (i.e., a function that is
integrable in the Lebesgue sense over every finite interval) corresponding to u(t),
we can define a distribution u through the convergent integral

o0

19) = (ul0), 0 0) = [ plt)olt)ar (2.1.1)

—00

p € D' (Zemanian [2], page 7).

Definition 2.1.4 The distribution that can be generated through the equation
(2.1.1) from locally integrable functions is called the regular distribution. A dis-
tribution that is not generated by locally integrable function is called a singular

distribution.
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An example of a singular distribution is the Dirac-delta § which is defined

by the equation
| (6,¢0) = #(0).

Definition 2.1.5 The sequence of distribution {#}§2, is said to converge in D’
if, for every ¢ in D, the sequence of number {{ux, ©)}$, converge in the ordinary
sense of the convergence of numbers. The limit of {(ux,)}5e; which we shall
denote by (i, ¢) defines a functional u acting on the space D. In this case we shall

also say that u is the limit in D’ of {ux}pe.; and we write klim e = p.
—00

Theorem 2.1.1 If a sequence of distributions {y;}$2, converges in D’ to the
functional p, then p is also a distribution. In other words, the space D’ is closed
under convergence.

Proof: See [2] page 37. 0

Definition 2.1.6 (Differentiation of Distributions)

The first derivative p'(t) of any distribution p(t), where ¢ is one-dimensional,

is the functional on D given by

(W (1), (t)) = (u(t), —¢'(t)) @ €D.

Example
(1) The first derivative of the Dirac-delta functional 51 denoted by the equa-
tion

(8,0) = (6,—¢') = —¢£'(0).

1 forO<t
H(t) =
0 for0>t

(2) We define
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H(t) is called the Heaviside function and H is a locally integrable function

(H’(t)v‘f’> = (H, —‘P’)
_“/ H{t)y' (t)dt
/ &
= —(p(t)
= —-cp(oo) + @(0) = ¢(0) = (5, )-

Thus H' = 6.

Definition 2.1.7 (The multiplication of distribution by the infinitely differentiable

functions)

Let p(t) be an infinitely differentiable function, define
()T, (1)) = (T, p(t)e(t)) (2.1.2)

for all ¢ € D.

Theorem 2.1.2.
1. u(t)6 = p(0)8, i is infinitely differentiable

2. t6(t) =0
Proof:
1. {(u(t)8,(8)) = (8, u(t)(?)) by (2.1.2)
= u(0)¢(0)
= “(0) {6, ‘P(t))

= {u(0)6,(t))-
Thus p(t)d = p(0)6 for all p € D.
2. (16, 0(t)) = {6, tp(t)), forallp € D
= 0p(0) = 0 = (0, (1))
Thus t6 = 0.
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Theorem 2.1.3 A necessary and sufficient condition for a distribution p(t) defined

over R to satisfy the equation

t"uft) =0 (2.1.3)
where m is a positive integer, is that u(¢) be a linear combination of the Dirac-delta
functional and its derivatives of order not greater than m — 1. That is

m—1

p= cxf® (2.1.4)
k=0

where the ¢, are arbitary constants.

Proof: That (2.1.4) is necessary for (2.1.3) to hold is obvious. To prove the
sufficiency of (2.1.3), we need the following Lemmas.

Lemma 2.1.1 For a testing function x(t) in D to have the form
x(t) =t"e(t) ) €D (2.1.5)
it is necessary and sufficient that
x® =0 k=01,.,m-1 (2.1.6)

Proof: See [2] page 81. O
Lemma 2.1.2 Let A(f) be a fixed testing function in D such that A(0) = 1 and
A®N0) = 0 (k = 1,2,...,m — 1). Then any testing function (t) in D can be

uniquely decomposed according to
m—1 1
Y(t) =1 D PO +x(@)
k=0

where x(t) is in D and satisfies (2.1.6).

Proof: See [2] page 82. 0
Proof of Theorem 2.1.3 Let t™u(t) = 0, then for any A(f) of the form given in
Lemma 2.1.1,

(1, x) = (u(), (1)) = ™ p(t), ¢(t)) = 0. (2.1.7)
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Thus, for every ¥ in D, we have by Lemma 2.1.2 and by (2.1.7) that

m—1

() = (e M(0) Y P O + x(t))

k=0
— A0 Y PP + (66, x(0)
>
S lOTORYOLY
k=0

Define the constant cx by

= (=1 (a0, A D).

Since ¥ (0) = (=1)% (6%, 4(t)}, we have

m—1
() = (Y es®,p(t)).
k=0

~

m—1
Hence pu(t) = Y. cxd®).

k=0

O

Theorem 2.1.4 Let i be a distribution that is defined over some neighborhood

of a fixed finite closed interval I in R. There exists a nonnegative integer r and a

finite positive constant C such that for every ¢ in Dy

()] < Csup e (2)).

Both C and r depend in-general upon p and I.

(2.1.8)

Proof: Suppose that for a given u no relatation such as (2.1.8) can hold. Therefore

for any positive integer k there exists a testing function ¢, in Dy such that

i, ox)| > k(b — a)* sup 1P ()]
= kvi(pr)-

where (k) = (b — a)*suplel” ()]
P

Let 0 = then Hk € Dy.
kvi(ex)’
Let m be some nonnegative integer. For k > m,
Ye(er) _ 1
m ¢ < 0r) = = 7
¥ ( k) ﬂnc( k) k']’k((Pk) k

Thus ~vx(8x) — 0 as k — oo, consequently 8 — 0 in Dy.

(2.1.9)
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Since y is a continuous functional on Dy, we have (i, 0} — 0 as k — oc.
But (2.1.9) implies that

s,60] = el
ke ()
ki ()

Thus contradiction. |

=1.

Definition 2.1.8 (The space S of testing functions of rapid descent)
Let S is the collection of all complex valued function ¢ on R which are

infinitely differentiable and () in S satisfies the infinite set of inequalities
[t R (1) € O — 00 <t <0

where m and k run through all nonnegative integers. Here the Cynx are constants
(with respect to t) which depend upon m and k.
Note D is a proper subspace of S.

Definition 2.1.9 (Convergence in S)
A sequence of functions {¢x(t)}52, is said to converge in S if every function
©x(t) is in S and if, for each nonnegative m and k, the sequence {t™or(t)}2,

converge uniformly in K.

Theorem 2.1.5 The space D is dense in the space § in the sense that for each ¢
in S there exists a sequence {©x(t)}52; with every ¢x(t) in D which converges in
S to ¢(t).

Proof: See [2] page 101. O

Definition 2.1.10 (The space S’ of distribution of slow growth)

A distribution p is said to be of slow growth if it is a continuous linear
functional on the space S of testing functions of rapid descent(such distributions
are also called tempered distributions). That is, a distribution x4 of slow growth is
a rule that assigns a number (i1, )} to each ¢ in S in such a way that the following
condition are fulfilled.

Linearity If 1 and g are in § and if any numbers o and 3, then

(1, a1 + Bipa) = e, 1) + Blp, 02).
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Continuity If {¢r}5e, is any sequence that converges in S to zero, then

lim (1, 1) = 0.

The space of all distribution of slow growth is denoted by S'. 8 is also
called the dual space of S.
Note S’ is a proper subspace of 7.

Theorem 2.1.6 If u(7) is in S, and ¢(t, 7) is in S¢,- then

P(t) = (u(r),¢(t,7)) isin S; and
P (1) = (u(r), ™ (t, 7))

where S;,S; and.S;,r is denoted the spaces of testing functions of rapid descent
defined over the space of variable t,7 and (¢, 7) respectively.

Proof: See [2] page 112. O

2.2 Convolution

Definition 2.2.1 (Direct product)
Let u(t) be a distribution in D} and ¥(7) be a distribution in D7 If e(t,T)

is an element of Dy ,, we define the direct product

(u(t) x v(7),(t, 7)) = (u(t), (v (1), (2, 7))-

Theorem 2.2.1 The direct product p{t) x v{7) of two distributions p(t) and v(7)
is a distribution in Dj .

Proof: See [2] page 115. O

Theorem 2.2.2 The direct product of two distributions of slow growth is another
distribution of slow growth.

That is if p(t) is in S{ and v(7) is in S then u(t) X vy is in S .

Proof: See [2] page 116. O

‘Example 2.2.1 The direct product of the delta function over R with it self yields
the delta functional over R%. That is

8(t) x 8(7) = 6(¢,7),
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because with ¢ in Dy,

(6(t) x 8(1), (¢, 7)) = (6(1), (6(7), 0(t, 7))
= (8(t), ¢(t,0)) = ¢(0,0)
= (5(ta"r)1‘P(taT)>'

Theorem 2.2.3 The support of the direct product of two distribution is the
cartesian product of their supports. That is, if 2, is the support of the distribution
u{t) and ©, is the support of the distribution v(7), the support of p(t) x v(7) is
the set 2, x Q.

Proof: See [2] page 118. O

Lemma 2.2.1 The space of all testing functions of the form
p(t,T) =D bi(t)0x(7)
k

where the ¥ (t) are in Dy, the Ox(7) are in D, and the summation has a finite
number of terms, is dense in D; .

Proof: See [2] page 119. O

Theorem 2.2.4 The direct product of two distribution in commutative

p(t) x v(r) = v(r) x p(t).

That is, for every testing function @(t,7) in Dy, -, we have

(@), W(r), @lt, 7)) = (7)) (), (t, 7)))- (2.2.1)

Proof: See [2] page 120. O

Corollary 2.2.1 The equation (2.2.1) still holds when u(t) is in S;, v(7) is in Sy,
and @(t,7) is in S 7.

Defintion 2.2.2 Let u{t) and v(t) be two continuous functions with bounded

support. A convolution between u(t) and v(t) is denoted by y(t) * ¥(t) and defined
by

[=4)

() # () = [ Bt (t — )dr.

-0
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The above equation cannot be used when p and v are arbitary distribution because,
for one reason, two distribution cannot be multiplies in general. Let ¢ be in D,

we may write
(pxv,0) = /_ f_ p(T)v(t — T)p(t)drdt.

By applying the change of variable 7 =2 and t =2 + ¥

ooy [ N / " W)l + y)dsdy.

The last expression has a form that is similar to that of the direct product of two

regular distribution. Thus

(o ,10) = (u(®) X (), p(t 4 7)) |
= (u(®), () ¢t + 7). (229

However, a problem arises in this case. Even though the function ot + ) is
infinitely smooth, it is not a testing function, since its support is not bounded in
the (¢, 7) plane. If the support of u(t) X v/(7) intersects the support of p(t+7) in
a bounded set, say , we can replace the right hand side of (2.2.2) by

((t) x v(1), A3, T)p(E + 7)) (2.23)

where A(t,7) is some testing function in Dy, that is equal to one over some neigh-
borhood of Q. Thus A(t, 7)e(t +7) € Dyr-

We have yet to determine under what conditions the intersection of the
support of u(t) X v(7) and ¢(t + 7) is always bounded for all ¢ in D and whether

w* v is a distribution.

Theorem 2.2.5 Let i and v be two distribution over R and let their convolution
p * v be defined by (2.2.2), when the right-hand side of (2.2.2) is understood to
be (2.2.3). Then, u* v will exist as a distribution over R under any one of the
following conditions:
a. Either p or v has a bounded support.
b. Both g and v have supports bounded on the left
[i.e.,there exists some constant T} such that f(t) = g(t) = 0 for ¢ <T].
c. Both p and v have supports bounded on the right
[i.e.,there exists some constant Ty such that f(t) = g(t) =0 for ¢ > T].
Proof: See [2] page 124. !
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Corallary 2.2.1 The convolution of two distribution is commutative p* v = v* .

That is, for every ¢ in D,

(w(t), W(r), et + 7)) = (w(7), (wld), @t + 7)))-

Theorem 2.2.6 Let , and @, be the respective supports of the distributions p
and v, which are defined over R, and let £, + {2, be the set in R each of whose
points can be written as the sum of a point in {2, and a point in £,. Then, the
support of y # v is contained in £, -+ Q.

Proof: See[2] page 125. O

Corollary 2.2.2 If both of the supports of the distribution p and v are either (a)
bounded or {b) bounded on the left or (¢) bounded on the right, then the support

of *v is respectively either (a) bounded or (b) bounded on the left or (c) bounded
on the right.

Example 2.2.2 Given u € D' be any distribution, then
1. 6xpu=p
2. §™ sy = p™ where §(m) and u{™ are the distributions with m-derivatives.
Proof 1. {(&* p)(t), ¢(t)) = (u(t), (6(r), (t +7)))
= {u(t), ¥(t))-
Thus 6 * p = p.
2. (8™ x p)(t), (t)) = (u(t), (67 (), p(t + 7))
= (), (6(r), (1) (t + 7))
= {u(t), (-1)me™(B)
= (u™(t), o(t))-
Thus 6™ # g = u(™.

Definition 2.2.3 (Convolution equation)

Consider a convolution equation in the form

fru=g (2.2.4)

when f and g are known distributions and u is an unknown distribution. We inay
seek all possible solutions u in D’. We want (2.2.4) has a unique solution u, thus

we restrict the convolution to some convolution algebra.
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A space A’ of distribution is said to be a convolution algebra if it possesses
the following properties:
1. A’ is a linear space.
2. A’ is closed under convolution.

3. Convolution is associative for any three distributions in A’.

Theorem 2.2.7 Let an equation f * 4 = g where f,g € Dg(the space of dis-
tribution whose support bounded from the left or sometimes call the right side
distribution). A necessary and sufficient condition for the equation to have at
least one solution in DY, for every g in D}, is that f possess an inverse f*Yin Df.
When f does possess an inverse in Dp, this inverse is unique and the equation

possesses a unique solution in D}, given by
u=G8xu=f""1x fru=f"txg : (2.2.5)

Proof: If the equation f *u = g has at least one solution in D%, then one of the
solution of the equation with g = 8 will be one of the inverse of f. Conversely,
if f has an inverse in DY, the equation (2.2.5) will be one of the solution of the

equation.
Finally, we will show the equation possesses a unique solution in D). For

if v and v are both in D% and are solutions, then
fru=g and f*rv=g.
On the convolving all terms by this particular inverse f* —1 we get
u=f*txg and v=f"txg

Since convolution is a single-valued operation, v = v.

This also implies that f*~! is unique in Df. O

Theorem 2.2.8 If & and j are in D% and possess inverses in Dj, then
(h#g)* ' = R e 0 (2.2.6)
Proof: Since convolution in D}, is associative and commutative,
(h* )% (R 1% * 1) = (hx R DNx(G*i* ) =6x6=6.

This establishes (2.2.6). ' O
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Definition 2.2.4 Let L denote the general differential operator of the form

s dar—1 d
L=an(—i~t-7;+an_1a—w—_—1-+ +a-1‘—iz+a0 (2.2.7)

when the a;(i = 0,1,2,...,n) are constants, a, # 0, and n = 1. We wish to solve

the equation

Lu=g (2.2.8)
where g is a known distribution in Dy and u is unknown but also required to be
in D);. The equation (2.2.8) may be written as a convolution equation:

(Lé) *u =g (2.2.9)
L6 = a,6™ + a,;_15<“—1> + -+ a1 6 4 agé. (2.2.10)

Thus, the technique developed for the convolution algebra Dy may be applied
here and, as we have shown the problem becomes simply that of finding in Dy an

inverse for Lé.

Theorem 2.2.9 The distribution L8, given by the equation (2.2.10) with the
a;(i = 1,2,...,m;n > 1) being constants and a, # 0, has an inverse in Dpy. This
inverse is H (t)p(t), where ¢(t) is that classical solution of the homogeneous equa-

tion Lu = 0 which satisfies the initial conditions
$(0) = ¢1(0) =--» = ¢*"P(0) =0 (2.2.11)

¢n(0) = o-
H(t)$(t) is called the Green’s function for L.
Proof: We have

(H(z)¢(z)), (=) = ((H(iv)@"(m)) —¢'(z))
—¢(z)¢' ()
f (—¢(z))¢ (x)dz

~ @@+ [ o) @)
= $(0)0(0) + (H@) (z), ¢(o)

~ (905, 6(2)) + (H(z)8 (=), 0())
_ (605 + H(2)d (2), 9())-
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Thus (H{x)¢(z)) = H(z)¢'(z) + ¢(0}6. Similarly
(H(z)¢(z))" = H(z)¢" (z) + ¢'(0)8 + $(0)&

(H(2)$(2))™V = Hz)o™ V(z) + "~ D(0)6 + - + ¢(0)6"~
(H(z)p(z))™ = H(z)o™ (z) + ¢ D(0)6 + -+ + ¢(0)5 1.

By the initial condition, we obtain
(H(z)p())®) = H(z)p™ (z) v=1,2,.,n—1
(H@)3@)" = HE)d™ (@) + =8
Thus (L8) * (H(z)é(2)) = L(H(2)$(a)) = H(@)Lo(z) + 6.
Since Le¢(zx) = 0, hence (L&) * (H(z)¢(x)) = 6.
It follows that (L8)*~! = H(z)¢(z). O
Example 2.2.3 Find the particular solut.ion of the equation
y'(z)+4y(z) =z, 0<z< 00
Now consider y”(x) + 4y(z) = 0. The classical solution is
¢(z) = Acos2x + Bsin 2z

under the condition ¢(0) =0, ¢'(0) = 1.
Thus A=0, B=3}. ¢(x) = }sin2z.
Let y(z) € D, then the particular solution is y{(z) = (H(z)¢(z)) * z. Thus

y(z) = [ 0:0 HR)o(r)(z — r)dr
= % /_0:0 H(r)sin2r(x —r)dr

1 &4 1 xr
= |z / sin 2rdr] — - f 7rsin 2rdr

2 0 2 0
=—chos2m+%:c+:1£mc052a:—%sian

= ~3 sin 2z + Z:r.

Theorem 2.2.10 Let Lu = g be a linear differential equation with constant
coefficients, where L is given by (2.2.5) and g is a continuous function for ¢ 2 to.

The solution to Lu = g that satisfies
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U(to) = ug, u‘(l) (tO) = ULy eemy u(n—l) (to) = Un—1

is given by
+ n—1 '
ut) = [ ot =ngr)dr+ Y bip(t— )
to i==0

where ¢(t) is the classical solution to the homogeneous equation Lu = 0 that
satisfies the initial conditions (2.2.11) and

b; = G;11U0 + Gi+1u1 + -+ + Cplin—i—1.
Proof: See [2] page 162. 3

2.3 Laplace Transform of Distribution

Definition 2.3.1 Let f{t) be a locally integrable function that satisfies conditions
A:

1. f(t)=0for —co <t <T.

2. There exists a real number ¢ such that f(t)e™° is absolutely integrable over

-0 <t < 0.

Let s denote the complex variable s = o + iw. The Laplace transformation is an
operation £ that assigns a function F(s) of the complex variable s to each locally
integrable function f(t) that satisfies conditions A. £ is defined by

Lf(t)=F(s) = /_ o:o f(tye tdt (2.3.1)

The function F(s) is called the Laplace transform of f(t).
The fact that f(t) =0 for —oc < t < T allows us to write

L) = F(s) = fT " f(He-tdt (2.3.2)

We shall refer to (2.3.2) as a right-side Laplace transform.
(2.3.2) may be broken up into the sum of two integrals

Lf(t)=LBS(t) + LS (). (2.3.3)

Here, Lpf(t) = Fz(s) / ft)e™stdt. (2.3.4)

Lof(t) = Fa(s) = /0 F(t)e—tdt. (2.35)
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The second part of condition A implies that (2.3.4) converges absolutely for every

(finite) value of s. Furthermore, since
|f(8)e™*| < 1f(t)e™"]

whenever t > 0 and Re s > ¢, (2.3.5) converges absolutely for all s in the half
plane Re s > ¢. We can therefore conclude that (2.3.2) converges absolutely for
all s in this half-plane.

The greatest lower bound o, on all possible values of c, for which the second
of condition A holds, is called the abscissa of absolute convergence and the open
half-plane Res > o, is called the half-plane(or region) of absolute convergence for
the Laplace transform (2.3.2). We show refer to a half-plane that is bounded on
the left but extends infinitely to the right as a right-sided half-plane. Note that
the Laplace transform of a right sided function that satisfies conditions A has as

its region of convergence either a right-sided half-plane or the entire s plane.

Theorem 2.3.1 Let f(t) be a continuous function that satisfies condition A and
let o, be the abscissa of absolute convergence for Lf(t) = F'(s). Then, F(s) is an
analytic function for Re s > o, and

F&) (g) = fco(-—t)kf(t)e_"tdt Re 8> 0, (2.3.6)
T

Proof: See [2] page 215. O

Theorem 2.3.2 Let the locally integrable function f(t) satisfy conditions A, let
its ordinary first derivative f’(t) exists and be continuous throughout some open
interval a < t < b, and let g, be the abscissa of absolute convergence for Lf(t) =
F(s). For each real constant c greater than o, and for a <t <5,

c+iy

£&) = £71F(s) = -2L lim F(s)e*ds 2.3.7)

L y—=0 Jo iy

where the path of integration is along the vertical line s = ¢+ éy.
Proof: See [2] page 216. O

Example 2.3.1 Let us establish that

1
gk+1?

k
E[%H(t)] - Res>0 ;k=0,1,2,.. (2.3.8)
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where

1 fo<ili<o
H(t) =

0 f—oco<t<O

a heaviside function.

Proof: By Mathematical induction, for k=0, £(1) =1

8

Now, let k& be a positive integer. Through an integration by parts, we may

write

Pt e I A ¢
—e ¥dt = — —Stdt
fo Kl s)o B—DI°

1 tk—l

= LGy Res>0.

According to the last expression, (2.3.8) will certainly hold so long as it holds when
k is replace by k — 1. This prove (2.3.8).

Definition 2.3.2 The Laplace transforms of right-side distributions, recall the

Laplace transform G(s) of a locally integrable function g(t) that satisfies the con-
ditions of definition 2.3.1

G(s) = Lg(t) = f g(t)e **dt ,Re s> o0,.
T

This relation may be written in the form

G(s) = (g(t),e™").

Now we try to define the Laplace transform of right-side distributions. Let f(Z) be
a distribution whose support is bounded on the left and there exists a real number

¢ for which e~ f(t) is a Tempered Distribution. Define
F(s) = Lf(t) = (e (1), Mt)e™~) (2.3.9)

where A(t) is any infinitely differentiable function with bounded support on the

left, which equal to one over the neighborhood of the support of f().For Re

8 > ¢, Mt)e (=) is a testing function in the space S of testing functions of

rapid descent and that e~ f(t) is in the space &’ of Tempered Distributions.
(2.3.9) can be deduced to

F(s) = Lf(t) = (F(2),

v}

=ty (2.3.10)

Now F(s) is a function of s defined over the right-sided half-plane Re s > c.
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Example 2.3.2 The following formulas are the consequence of definition 2.3.2

1.

A

L8 =1 for —o0o < Re 8 < oo where § is Dirac-delta functional whose support
concentrated on a single point.

L5(t —7) = e~ for ~00 < Re s < 0o and 7 is a real constant.

L8®) = g* for —oo < Re s < o0 and k is a positive integer.

L5 (t — 1) = s¥¢™*" for ~cc < Re 8 < 0.

L(tk f(t)) = (~1)*F*)}(s) for Re s > o, where f(t) is a distribution in Df.
LfF)(t) = s*F(s) for Re s > o, where f(t) is a distribution in D}.



