TABLE OF CONTENTS

	Page	
Acknowledgements	iii	
Abstract	iv	
List of tables	x	
List of illustrations	xi	
List of abbreviations	xiii	
Chapter 1 Introduction	1	
1.1 Study objective	2	
1.2 Study scope	2	
1.3 Literature review	3	
Chapter 2 Processes and Procedures	5	
2.1 AVO Processing	5	
2.2 AVO Angle stacks	6	
2.3 AVO Modeling	7	
2.4 Phase correlation and phase rotation	11	
2.5 Elastic impedance	13	
Chapter 3 AVO processing and AVO angle stack results	14	
3.1 AVO Processing results	14	
3.2 AVO Angle stack results	19	
Chapter 4 AVO modeling results	32	
4.1 Zoeppritz-equations AVO modeling results	32	
4.2 Full elastodynamic modeling results	37	
4.3 Wavelet phase correlation for AVO analysis	41	
Chapter 5 AVO analysis		
5.1 AVO analysis of the surface seismic data	45	
5.2 Elastic impedance for AVO analysis	49	
5.3 Acoustic impedance and reflection coefficient relationship	49	
5.4 P-wave and S-wave velocity relationship	53	

	Page
Chapter 6 Conclusions	56
References	57
Appendix	59
Curriculum vitae ,	64

LIST OF TABLES

Table			Page
2.1 Selected parameters for the	parabolic Radon-transform	n demultiple	8
2.2 Time-offset values for the the	hree angle-band mute patte	erns	8
2.3 Velocity and density param	eters of gas sands, wet san	ds, and coal	
beds used in the Zoeppritz-	equations AVO modeling.		9
2.4 Main parameters used to sti	mulate the synthetic mode	:1	12
5.1 Real amplitude values picke	ed from near-angle and far	angle stack of	
line B on CDP gather number	ber 349		48
5.2 Velocity and density param	eters for bottom lithologic	units	52
5.3 Vp and Vs linear-regression	relationship equations for	r gas sands,	
wet sands, coal beds, and sh	nales		53

LIST OF ILLUSTRATIONS

Figure		Page
2.1	Schematic map of Line A and B including Well C location and	
	CDP number	6
2.2	The 40 Hz-Ricker wavelet that was used in the elastodynamic	
	modeling	12
3.1	CDP gather 349 on line B before Radon demultiple but after NMO	
	corrections and mute	15
3.2	CDP gather 349 on Line B after Radon demultiple	16
3.3	Full-fold stack section of line B without Radon demultiple	17
3.4	Full-fold stack section of line B with Radon demultiple	18
3.5	Full-fold stack section of line B without Radon demultiple,	
	zoomed at 0.9-1.9 sec	20
3.6	Full-fold stack section of line B with Radon demultiple,	
	zoomed at 0.9-1.9 sec	21
3.7	Near-angle (0°-15°) band of CDP gather 349 of line B	22
3.8	Middle-angle (15°-30°) band of CDP gather 349 of line B	23
3.9	Far-angle (30°-45°) band of CDP gather 349 of line B	24
3.10	Near angle stack of line B	25
3.1	Middle-angle stack of line B	26
3.12	2 Far-angle stack of line B	27
3.13	Subtraction of near-angle stack from middle-angle stack of Line B	29
3.14	Subtraction of near-angle stack from far-angle stack of Line B	30
3.13	Subtraction of middle-angle stack from far-angle stack of Line B	31
4.1	Incident angle and reflection coefficient relationships for	
	(a) the three gas sands and (b) the four wet sands	33

Figure (continued)	Page
4.2 Incident angle and reflection coefficient relationships for	
•	34
	34
4.3 Reflection coefficient and incident angle relationships	26
	36
	38
	39
4.6 Final processed synthetic CDP gather at Well C	40
4.7 Phase correlation of synthetic trace with real seismic trace	42
4.8 Processed CDP gather 286 of line A after phase rotation	43
4.9 Processed CDP gather 349 of line B after phase rotation	44
5.1 CDP gather 286 of line A after phase ratation showing	
the seismic marker events and the three propagation angle bands	46
5.2 CDP gather 349 of line B after phase rotation showing	
the seismic marker events and the three propagation angle bands	47
5.3 Real amplitude cross plot between near-offset and far-offset stack	
on CDPgather number 349 of line B	48
5.4 Elastic impedance at near-angle stack (EI(10)) and	
far-angle stack (EI(25)) relationship	50
5.5 Acoustic impedance (AI) and far-angle stack (EI(25))	
	50
5.6 Acoustic impedance and top reflection coefficient relationship	51
5.7 Acoustic impedance and bottom reflection coefficient relationship	51
•	54
	54
	55
	55

LIST OF ABBREVIATIONS

AI - Acoustic impedance

AVO - Amplitude variation with offset

CDP - Common depth point

EI - Elastic impedance

NMO - Normal moveout