CHAPTER 2 PRELIMINARIES

In this chapter, we give some definitions, notations and basic concepts which will be used in later chapters.

2.1 Euler Equation

Consider the differential equation of the form

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y(x) = b(x)$$
 (2.1.1)

where $a_i(x)$, i = 0, 1, 2, ..., n and b(x) are defined in some interval I. The coefficients $a_i(x)$ are continuous in an interval I and $a_0(x) \neq 0$ for any x. Equation of this form are called *linear* differential equations.

If b(x) = 0 in I, then

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y(x) = 0$$
 (2.1.2)

and (2.1.2) is said to be a homogeneous equation.

In (2.1.2) , let $a_i(x)=a_ix^{n-i}, (0\leq i\leq n)$, where the a_i are constants . Then (2.1.2) becomes

$$a_0 x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \dots + a_n y(x) = 0$$
 (2.1.3)

which is known as the n-order Euler equation. We assume that the interval I does not contain the point x=0.

Example 2.1.1

- 1. $m_0t^2y''(t) + m_1ty' + m_2y(t) = 0$ is the general form of the second order Euler equation.
- 2. $m_0t^3y^{'''}+m_1t^2y^{''}(t)+m_2ty^{'}+m_3y(t)=0$ is the general form of the third order Euler equation.
- 3. $m_0t^4y^{(4)}+m_1t^3y^{\prime\prime\prime}(t)+m_2t^2y^{\prime\prime}+m_3ty^{\prime}+m_4y(t)=0$ is the general form of the fourth order Euler equation.

2.2 Distribution

Fundamental spaces of test functions

For p=0,1,2,... and a compact set $K\subset R$, we use the following standard notation:

 $C^p \equiv C^p(R)$: The space of all complex-valued functions on R with continuous derivatives at least up to order p.

 $C_0^p \equiv C_0^p(R)$: The subspace of C^p comprising all functions with compact support.

 $C_K^p \equiv C_K^p(R)$: The subspace of C_0^p comprising all functions with compact support contained in the same fixed compact K.

For $p = \infty$, we define

 $C^{\infty} \equiv C^{\infty}(R)$: The space of all complex-valued functions on R which have continuous derivatives of all order.

 $C_0^\infty \equiv C_0^\infty(R)$: The subspace of C^∞ comprising all infinitely differentiable functions with compact support.

 $C_K^{\infty} \equiv C_K^{\infty}(R)$: The subspace of C_0^{∞} comprising all infinitely differentiable functions with compact support contained in the same fixes compact K.

Definition 2.2.1 The space of testing function, which is denoted by \mathcal{D} consists of all complex-valued function $\varphi(t)$ with continuous derivatives of all orders and with bounded support, which means that function vanishes outside of some bounded region.

Function $\varphi(t)$ is called the testing function . The testing functions can be added and multiplied by real numbers to yield new testing functions , so that $\mathcal D$ is a linear space .

Definition 2.2.2 A functional on linear(vector) space is a mapping $\mu: \mathcal{D} \to C$, where C is the set of complex numbers. For all $\varphi \in \mathcal{D}$, the value of μ acting on φ is denoted by

$$\mu(\varphi)$$
 or $<\mu,\varphi>$ $\in C$

We are particularly interested in functionals which are

1) linearity: μ is said to be a linear funtional on $\mathcal D$ if and only if given any two testing function φ_1, φ_2 in $\mathcal D$ and any scalar α_1, α_2 in C, we have

$$<\mu, \alpha_1\varphi_1 + \alpha_2\varphi_2> = \alpha_1 <\mu, \varphi_1> +\alpha_2 <\mu, \varphi_2>$$

2) continuity: μ is said to be continuous functional on \mathcal{D} if and only if whenever a sequence $(\varphi_n)_{n\in\mathbb{N}}$ converges to zero in \mathcal{D} (in the agreed sense) the corresponding sequence of complex numbers $(<\mu,\varphi_n>)_{n\in\mathbb{N}}$ converges to zero in the usual sense.

A continuous linear functional on a linear space $\mathcal D$ is a distribution . And the space of all such distribution is denoted by $\mathcal D'$.

Then, the functions belonging to \mathcal{D} will generally be called testing function, while the functionals belonging to \mathcal{D}' will be called generalized functions or distribution.

Example 2.2.1

- (1) The locally integrable function f is a distribution , that is, generated by the locally integrable function f. Then we define $<\mu_f,\varphi>=\int_K f(t)\varphi(t)dt$, where K is a support of φ and $\varphi\in\mathcal{D}$.
- (2) The Dirac delta functional is a distribution defined by $\langle \delta, \varphi \rangle = \varphi(0)$ for $\varphi \in \mathcal{D}$ and the support of δ is $\{0\}$.

Definition 2.2.3 Let $\mu(t)$ be a locally integrable function (i.e., a function that is inergrable in the Lebesgue sense over every finite interval) corresponding to $\mu(t)$, we can define a distribution μ through the convergent integral

$$<\mu,\varphi> = <\mu(t), \varphi(t)> = \int_{-\infty}^{\infty} \mu(t)\varphi(t)dt$$
 (2.2.1)

,where $\mu \in \mathcal{D}'$.

Definition 2.2.4 A distribution μ that is generated by a locally integrable function is called a *regular distribution*. A distribution that is not generated by a locally integrable function is called a *singular distribution*.

An example of a distribution that is a singular distribution is the so-called Delta function or Dirac delta function that denoted by δ , and is defined by the equation

$$\langle \delta, \varphi \rangle = \varphi(0)$$
 (2.2.2)

Clearly , (2.2.2) is a continuous linear functional on $\mathcal D$. However, this distribution cannot be obtained from a locally integrable function through the use of (2.2.1). Indeed, if there were such a function $\delta(t)$, then we would have

$$\varphi(0) = \int_{-\infty}^{\infty} \delta(t)\varphi(t)dt$$

for all $\varphi(t) \in \mathcal{D}$.

If

$$arphi(t) = \left\{ egin{array}{ll} exp(rac{-a^2}{a^2-t^2}) & ; -a < t < a \\ 0 & ; otherwise \end{array}
ight.$$

,we have

$$\varphi(0) = \frac{1}{e} = \int_{-a}^{a} \delta(t) exp(\frac{-a^2}{a^2 - t^2}) dt$$
 (2.2.3)

If $\delta(t)$ were a locally integrable function, the right-hand side of (2.2.3) converges to zero as $a\to 0$. This would be contradiction. Hence, δ is not a regular distribution. It is singular distribution.

Definition 2.2.5 The sequence of distribution $\{\mu_k\}_{k=1}^{\infty}$ is said to converge in \mathcal{D}' if, for every φ in \mathcal{D} , the sequence of number $\{<\mu_k,\varphi>\}_{k=1}^{\infty}$ converge in the ordinary sense of the convergence of numbers. The limit of $\{<\mu_k,\varphi>\}_{k=1}^{\infty}$ which we shall denote by $<\mu,\varphi>$ defines a functional μ acting on the space \mathcal{D} . In this case we shall also say that μ is the limit in \mathcal{D}' of $\{\mu_k\}_{k=1}^{\infty}$ and we write $\lim_{k\to\infty}\mu_k=\mu$

Theorem 2.2.1 If a sequence of distributions $\{\mu_k\}_{k=1}^{\infty}$ converges in \mathcal{D}' to the functional μ , then μ is also a distribution. In other words, the space \mathcal{D}' is closed under convergence.

Proof: See [8] page 37.

Definition 2.2.6 (The Differentiation of Distributions)

Let μ be any distribution , then its derivatives is the distribution $\mu^{'}$ defined by

$$<\mu^{'}(t), \varphi(t)>=<\mu, -\varphi^{'}(t)$$

for all $\varphi \in \mathcal{D}$,where $\varphi^{'}$ denotes the ordinary classical derivative of the function φ

In general , the kth-order of derivatives of a disribution μ is denoted by $\mu^{(k)}$ and defined by

$$<\mu^{(k)}, \varphi> = <\mu, (-1)^k \varphi^{(k)}> \text{ for } \varphi \in \mathcal{D}.$$

Example 2.2.2

(1) The first derivative of the Dirac delta functional $(\delta^{(1)})$ defined by

$$<\delta^{(1)}, \varphi>=<\delta, (-1)\varphi'>$$

= $(-1)<\delta, \varphi'>$
= $-\varphi'(0)$

for $\varphi \in \mathcal{D}$

(2) The kth-order of derivatives of the Dirac delta functional is denoted by $\delta^{(k)}$ and defined by

$$<\delta^{(k)}, \varphi> = <\delta, (-1)^{(k)}\varphi^{(k)}>$$

= $(-1)^{(k)}\varphi^{(k)}(0)$

for $\varphi \in \mathcal{D}$

(3) H(t) is called the Heaviside function that defined by

$$H(t) = \begin{cases} 1 & \text{for } t > 0 \\ 0 & \text{for } t < 0 \end{cases}$$

The first derivative of the Heaviside function denoted by H'(t) and defined by

$$< H'(t), \varphi > = < H(t), -\varphi' >$$

$$= -\int_{-\infty}^{\infty} H(t)\varphi'(t)dt$$

$$= -\int_{0}^{\infty} \varphi'(t)dt$$

$$= -(\varphi(t))_{0}^{\infty}$$

$$= -\varphi(\infty) + \varphi(0)$$

$$= \varphi(0)$$

$$= < \delta, \varphi > .$$

Thus $H' = \delta$.

Definition 2.2.7 (The Multiplication of a Distribution by Infinitely Differentiable Function)

Let $\alpha(t)$ be the infinitely differentiable function and define the product of $\alpha(t)$ with any distribution μ in \mathcal{D}' by

$$<\alpha\mu, \varphi> = <\mu, \alpha\varphi>$$
 for all $\varphi\in\mathcal{D}$.

Example 2.2.3

$$(1) < \alpha(t)\delta, \varphi(t) > = < \delta, \alpha(t)\varphi(t) > \text{ by definition } 2.2.7$$

$$= \alpha(0)\varphi(0)$$

$$= \mu(0) < \delta, \varphi(t) >$$

$$= < \alpha(0)\delta, \varphi(t) >$$

Thus
$$\alpha(t)\delta = \alpha(0)\delta$$
 for all $\varphi \in \mathcal{D}$

$$(2) < t\delta, \varphi(t) > = < \delta, t\varphi(t) >$$

$$= 0\varphi(0)$$

$$= 0$$

$$= < 0, \varphi(t) >$$
Thus $t\delta = 0$

$$(3) < t\delta^{(1)}, \varphi(t) > = < \delta^{(1)}, t\varphi(t) >$$

$$= < \delta, (-1)(t\varphi(t))^{(1)} >$$

$$= < \delta, -\varphi > - < \delta, t\varphi^{(1)}(t) >$$

$$= -\varphi(0)$$

$$= < -\delta, \varphi >$$
Thus $t\delta^{(1)} = -\delta$

(4) In general ,
$$t\delta^{(m)} = -m\delta^{(m-1)}$$
, $m = 1, 2, 3, ...$

$$< t\delta^{(m)}(t), \varphi(t) > = < \delta^{(m)}(t), t\varphi(t) >$$

$$= < \delta(t), (-1)^m (t\varphi(t))^{(m)} >$$

$$= (-1)^m < \delta(t), m\varphi^{(m-1)}(t) >$$

$$= (-1)^m m < \delta(t), \varphi^{(m-1)}(t) >$$

$$= (-1)^m m < (-1)^{(m-1)} \delta^{(m-1)}(t), \varphi(t) >$$

$$= < -m\delta^{(m-1)}(t), \varphi(t) >$$

Thus $t\delta^{(m)}(t) = -m\delta^{(m-1)}(t)$

Definition 2.2.8 (The space S of testing functions of rapid descent)

Let S is the collection of all complex valued functions φ on R which are infinitely differentiable and $\varphi(t)$ in S satisfies the infinite set of inequalities

$$|t^m \varphi^{(k)}(t)| \le C_{mk}$$
, $-\infty < t < \infty$

where m and k run through all nonnegative integers. Here the C_{mk} are constants (with respect to t) which depend upon m and k.

Note : $\mathcal{D} \subset \mathcal{S}$.

Definition 2.2.9 (Convergence in S)

A sequence of functions $\{\varphi_k(t)\}_{k=1}^{\infty}$ is said to converges in S if every function $\varphi_k(t)$ is in S and if, for each nonnegative m and k, the sequence $\{t^m\varphi_k(t)\}_{k=1}^{\infty}$ converge uniformly in R.

Theorem 2.2.2 The space \mathcal{D} is dense in the space \mathcal{S} in the sense that for each φ in \mathcal{S} there exists a sequence $\{\varphi_k(t)\}_{k=1}^{\infty}$ with every $\varphi_k(t)$ in \mathcal{D} which converges in \mathcal{S} to $\varphi(t)$.

Proof: See [8] page 101.

Definition 2.2.10 (The space S' of distribution of slow growth)

A distribution μ is said to be of slow growth if it is a continuous linear functional on the space $\mathcal S$ of testing functions of rapid descent (such distributions are also called tempered distributions). That is, a distribution μ of slow growth is a rule that assigns a number $<\mu,\varphi>$ to each φ in $\mathcal S$ in such a way that the following condition are fulfilled.

Linearity: If φ_1 and φ_2 are in $\mathcal S$ and if any numbers α and β , then

$$<\mu,\alpha\varphi_1+\beta\varphi_2>=\alpha<\mu,\varphi_1>+\beta<\mu,\varphi_2>$$

Continuity : If $\{\varphi_k\}_{k=1}^{\infty}$ is any sequence that converges in $\mathcal S$ to zero , then

$$\lim_{k\to 0} <\mu, \varphi_k>=0$$

The space of all distribution of slow growth is denoted by \mathcal{S}' . \mathcal{S}' is also called the dual space of \mathcal{S} .

 $Note: \mathcal{S}^{'}$ is a proper subspace of $\mathcal{D}^{'}$.

2.3 Laplace transform of distribution

Definition 2.3.1 Let f(t) be a locally integrable function that satisfies the following condition.

- 1. f(t) = 0 for $-\infty < t < T$ where T is a real constant.
- 2. There exists a real number c such that $f(t)e^{-ct}$ is absolutely integrable over $-\infty < x < \infty$. Then the Laplace transform of f(t) is defined by

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_{T}^{\infty} f(t)e^{-st}dt$$
 (2.3.1)

where s is a complex variable. It can be shown that F(s) is an analytic function

for the half-plane $Re(s) > \sigma_a$, where σ_a is an abscissa of absolute convergence for $\mathcal{L}\{f(t)\}$. Now (2.3.1) can be replaced by the notation

$$F(s) = \mathcal{L}\{f(t)\} = \langle f(t), e^{-st} \rangle$$
 (2.3.2)

Suppose f(t) is a distribution , that is , $f\in\mathcal{D}'$. We try to define the Laplace transform of right-side distributions .

Suppose f(t) is a distribution whose support is bounded on the left and there exists a real number c for which $e^{-ct}f(t)$ is in the space \mathcal{S}' of a tempered distributions. Define

$$F(s) = \mathcal{L}\{f(t)\} = \langle e^{-st}f(t), X(t)e^{-(s-c)t} \rangle$$
 (2.3.3)

where X(t) is any infinitely differentiable function which bounded support on the left and equals to 1 over the neighborhood of support of f(t).

For Re(s) > c, $X(t)e^{-(s-c)t}$ is a testing function in the space S of a testing function of rapid descent. Equation (2.3.3) can be deduced to the definition

$$F(s) = \mathcal{L}\{f(t)\} = \langle f(t), e^{-st} \rangle$$
 (2.3.4)

Then equation (2.3.4) possesses a sense, that is, the same notation as (2.3.2).

Now, F(s) is a function of s defined over the right-side half-plane Re(s)>c, and Zemanian [8] has proved that F(s) is an analytic function in the region of convergence $Re(s)>\sigma_1$, where σ_1 is the abscissa of convergence for which $e^{-ct}f(t)\in S'$.

Consider

$$\mathcal{L}\{c_{1}f_{1}(t) + c_{2}f_{2}(t)\} = \int_{T}^{\infty} e^{-st} \{c_{1}f_{1}(t) + c_{2}f_{2}(t)\} dt$$

$$= \int_{T}^{\infty} e^{-st} c_{1}f_{1}(t) dt + \int_{T}^{\infty} e^{-st} c_{2}f_{2}(t) dt$$

$$= c_{1} \int_{T}^{\infty} e^{-st} f_{1}(t) dt + c_{2} \int_{T}^{\infty} e^{-st} f_{2}(t) dt$$

$$= c_{1}\mathcal{L}\{f_{1}(t)\} + c_{2}\mathcal{L}\{f_{2}(t)\}.$$

Hence

$$\mathcal{L}\{c_1 f_1(t) + c_2 f_2(t)\} = c_1 \mathcal{L}\{f_1(t)\} + c_2 \mathcal{L}\{f_2(t)\}. \tag{2.3.5}$$

Theorem 2.3.1 Let f(t) be a continuous function that satisfies condition of definition 2.3.1 and let σ_a be the abcissa of absolute convergence for $\mathcal{L}\{f(t)\} = F(s)$. Then, F(s) is an analytic function for $Re(s) > \sigma_a$ and

$$F^{(k)}(s) = \int_{T}^{\infty} (-t)^{k} f(t) e^{-st} dt ; Re(s) > \sigma_{a}$$
 (2.3.6)

Proof: See [8] page 215.

Example 2.3.1

1.
$$\mathcal{L}\left\{\frac{t^k H(t)}{k!}\right\} = \frac{1}{s^{k+1}}$$
, $Re(s) > 0, k = 0, 1, 2, ...$, where
$$H(t) = \begin{cases} 1 & \text{for } t \in [0, \infty) \\ 0 & \text{for } t \in (-\infty, 0) \end{cases}$$

is a Heaviside function

Proof: By definition 2.3.1, we obtain

$$\mathcal{L}\left\{\frac{t^k H(t)}{k!}\right\} = \int_0^\infty \frac{e^{-st}t^k}{k!} dt$$

$$= \frac{1}{k!} \int_0^\infty e^{-st} t^k dt$$

Let x = st, then dx = sdt. So

$$\mathcal{L}\{\frac{t^{k}H(t)}{k!}\} = \frac{1}{sk!} \int_{0}^{\infty} (\frac{x}{s})^{k} e^{-x} dx$$

$$= \frac{1}{k!s^{k+1}} \int_{0}^{\infty} e^{-x} x^{k} dx$$

$$= \frac{1}{k!s^{k+1}} \Gamma(k+1) ; Re(s) > 0.$$

Since $\Gamma(k+1) = k!$,

$$\mathcal{L}\left\{\frac{t^k H(t)}{k!}\right\} = \frac{k!}{k! s^{k+1}}$$
$$= \frac{1}{s^{k+1}} \quad ; \ Re(s) > 0$$

Theorem 2.3.2 Suppose that f is continuous and that f' is piecewise continuous on any interval $0 \le t \le A$. Suppose further that there exist constant K, a, and Msuch that $|f(t)| \leq Ke^{at}$ for $t \leq M$. Then $\mathcal{L}\{f^{'}(t)\}$ exists for s > a , and moreover

$$\mathcal{L}\lbrace f'(t)\rbrace = s\mathcal{L}\lbrace f(t)\rbrace - f(0) \tag{2.3.7}$$

Proof: See [1] page 296.

Theorem 2.3.3 Suppose that the function $f, f', ..., f^{(n-1)}$ are continuous, and that $f^{(n)}$ is piecewise continuous on any interval $0 \le t \le A$. Suppose further that there exist constant k, a and M such that

$$|f(t)| \le ke^{at}, |f'(t)| \le ke^{at}, ..., |f^{(n-1)}(t)| \le ke^{at}$$
 for $t \ge M$.

Then $f(f^{(n)}(t))$ exists for a second is given by

Then $\mathcal{L}{f^{(n)}(t)}$ exists for s > a and is given by

$$\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$
 (2.3.8)

Proof: By mathematical induction,

we let
$$P(n) = \mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$
 for $n = 1$ and by theorem 2.3.2, we can see that $P(1)$ is true.

Suppose P(k) is true. Next we want to show that P(k+1) is also true. Consider

$$\begin{split} \mathcal{L}\{f^{(k+1)}f(t)\} &= \mathcal{L}\{\frac{d}{dt}f^{(k)}(t)\} \\ &= s\mathcal{L}\{f^{(k)}(t)\} - f^{(k)}(0) \ \ by \ \ theorem \ \ 2.3.2 \\ &= s[s^k\mathcal{L}\{f(t)\} - s^{k-1} - \dots - sf^{(k-2)}(0) - f^{(k-1)}(0)] - f^{(k)}(0) \\ &= s^{k+1}\mathcal{L}\{f(t)\} - s^kf(0) - \dots - s^2f^{(k-2)}(0) - sf^{(n-1)}(0) - f^{(k)}(0) \end{split}$$

Hence P(k+1) is true.

Then we obtain

$$\mathcal{L}\{f^{(n)}\} = s^n \mathcal{L}\{f(t)\} - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

Corollary 2.3.1 Suppose that the function $f,f',...,f^{(n-1)}$ are continuous, and that $f^{(n)}$ is piecewise continuous on any interval $0 \le t \le A$. Suppose further that there exist constant k,a and M such that

$$|f(t)| \le ke^{at}, |f'(t)| \le ke^{at}, ..., |f^{(n-1)}(t)| \le ke^{at} \text{ for } t \ge M.$$

Then $\mathcal{L}\lbrace f^{(n)}(t)\rbrace$ exists for s>a and $f(0)=f'(0)=...=f^{(n-1)}=0$ and is given by

$$\mathcal{L}\lbrace f^{(n)}(t)\rbrace = s^n \mathcal{L}\lbrace f(t)\rbrace \tag{2.3.9}$$

Example 2.3.2 The following formulas are the consequences of definition 2.3.1

- 1. $\mathcal{L}\{\delta\} = 1$ for $-\infty < Re(s) < \infty$ and δ is the Dirac delta functional whost support concentrated on a single point.
- 2. $\mathcal{L}\{\delta^{(k)}\}=s^k, -\infty < Re(s) < \infty, k \text{ is a positive integer.}$
- 3. $\mathcal{L}\{t^k f(t)\} = (-1)^k F^{(k)}, Re(s) > \sigma_1$, where f(t) is a distribution in the space \mathcal{D}_R' of distribution whose supports are bounded on the left.
- 4. $\mathcal{L}\lbrace f^{(k)}(t)\rbrace = s^k F(s), Re(s) > \sigma_1, \text{ where } f(t) \in \mathcal{D}'_R$
- 5. $\mathcal{L}\left\{\frac{t^k e^{\alpha t}}{k!}H(t)\right\} = \frac{1}{(s-\alpha)^{k+1}}, Re(s) > Re(\alpha) \text{ and } H(t) \text{ is the Heaviside function.}$

Definition 2.3.2 (The inverse Laplace transform)

Let f(t) be a locally integrable function that satisfies the conditions of definition 2.3.1, the inverse Laplace transform of F(s), denote by $\mathcal{L}^{-1}\{F(s)\}$ and defined by

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi i} \lim_{y \to \infty} \int_{c-iy}^{c+iy} F(s)e^{st}ds$$
 (2.3.10)

where $Re(s) \ge c > \sigma_a$

Example 2.3.3

1.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^{k+1}}\right\} = \frac{H(t)t^k}{k!}$$
 ; $Re(s) > 0$

2.
$$\mathcal{L}^{-1}{s^k} = \delta^{(k)} - \infty < Re(s) < \infty$$

Lemma 2.3.1 Assume that over the half-plane $Re(s) \ge a$, F(s) is analytic and satisfies the inequality

$$|F(s)| \le \frac{c}{|s|^2} \tag{2.3.11}$$

where c is a constant.

If the integral $\mathcal{L}^{-1}\{F(s)\}$ is taken over some vertical line in the half-plane $Re(s) \geq a$, $\mathcal{L}^{-1}\{F(s)\} = f(t)$ exists and is a continuous function for all t and f(t) = 0 for t < 0.

Proof: See [8] page 217.

Lemma 2.3.2 Let F(s) be a function that is analytic over a half-plane $Re(s) \ge a$ and is bounded according to $|F(s)| \le P(|s|)$, $Re(s) \ge c$ where P(|s|) is some polynomial in |s|. Then, F(s) is the Laplace Transform of a distribution f(t) whose support is bounded on the left at t=0.

Proof: See [8] page 236.