CHAPTER 2
PRELIMINARIES

In this chapter, we give some definitions , notations and basic concepts
which will be used in later chapters.
2.1 Euler Equation
Consider the differential equation of the form
ao(@)y™ + a1 (2)y "D + ... + an(z)y(z) = b(z) (2.1.1)

where a;(z),4=0,1,2,...,n and b(z) are defined in some interval I . The
coefficients a;(z) are continuous in an interval I and ag(z) # 0 for any 7 . Equation
of this form are called linear differential equations .

If b(x) = 0 in I ,then

a0(@ly™ + ar(@)y™ D + .. + an(@)y(z) = 0 (21.2)

and (2.1.2) is said to be a homogeneous equation .
In (2.1.2) , let a;(z) = a;z™% (0 < i < n) , where the a; are constants .
Then (2.1.2) becomes

aox"y(”) + alm“'ly(”_l) + ... +any(z) =0 (2.1.3)

which is known as the n—order Euler equation. We assume that the interval J

does not contain the point x =0 .

Example 2.1.1
1. mot?y” (£) + muty + may(t) = 0 is the general form of the second order

Euler equation.

2. motdy” +mut?y” () + maty + may(t) = 0 is the general form of the

third order Euler equation.

3. motty™® +m 3y () + maty” +maty’ +may(t) = 0 is the general form
of the fourth order Euler equation.



3

2.2 Distribution

Fundamental spaces of test functions

For p=10,1,2,...and a compact set K C R , we use the following standard
notation:

C? = CP(R) : The space of all complex-valued functions on R with continuous
derivatives at least up to order p.
C§ = CE(R) : The subspace of C? comprising all functions with compact support.
C% = C%(R) :The subspace of C§ comprising all functions with compact
support contained in the same fixed compact K.
For p = 0o , we define
C> = C*(R) : The space of all complex-valued functions on R which have
continuous derivatives of all order.
Cg° = C5°(R) : The subspace of C* comprising all infinitely differentiable
functions with compact support.
C¥ = CF(R) : The subspace of C§° comprising all infinitely differentiable
functions with compact support contained in the same fixes
compact K,

Definition 2.2.1 The space of testing function , which is denoted by D consists of
all complex-valued function () with continuous derivatives of all orders and with
bounded support, which means that function vanishes outside of some bounded
region.

Function (¢} is called the testing function . The testing functions can be
added and multiplied by real numbers to yield new testing functions , so that D
is a linear space .

Definition 2.2.2 A functional on linear(vector) space is a mapping y: D — C
,where C' is the set of complex numbers. For all ¢ € D, the value of U acting on
¢ is denoted by

plp) or < p,p> €C
We are particularly interested in functionals which are
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1) linearity : y is said to be a linear funtional on D if and only if given any

two testing function 1, ¢ in D and any scalar o, 0 in C', we have

< Hya1p1 oy >= a1 < p,01 > fag < 4,0 >

2) continuity: 4 is said to be continuous functional on D if and only if
whenever a sequence (o, )nen converges to zero in D (in the agreed sense ) the

corresponding sequence of complex numbers (< i4,9n >)nen converges to zero in
the usual sense.

A continuous linear functional on a linear space D is a distribution . And
the space of all such distribution is denoted by D’.

Then, the functions belonging to D will generally be called testing func-
tion, while the functionals belonging to D’ will be called generalized functions or
distribution.

Example 2.2.1

(1) The locally integrable function f is a distribution , that is, generated by the
locally integrable function f . Then we define < ug,¢ >= [ x F(£)p(t)dt, where
K is a support of p and ¢ € D.

(2) The Dirac delta functional is a distribution defined by < 6,¢ >= ¢(0) for
¢ € D and the support of § is {0} .

Definition 2.2.8 Let x(¢) be a locally integrable function (i.e., a function that is
inergrable in the Lebesgue sense over every finite interval) corresponding to u(t) ,

we can define a distribution p through the convergent integral

oo

< o >=< p(t), p(t) >= f u()o(t)dt (22.1)

—CC

,where p € D',

Definition 2.2.4 A distribution x that is generated by a locally integrable
function is called a regular distribution . A distribution that is not generated by

a locally integrable function is called a singular distribution.
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An example of a distribution that is a. singular distribution is the so-called

Delta function or Dirac delta function that denoted by ¢ , and is defined by the
equation

< 6,9 >=(0) (2.2.2)

Clearly , (2.2.2) is a continuous linear functional on D . However, this
distribution cannot be obtained from a locally integrable function through the use

of (2.2.1). Indeed, if there were such a function § (t) , then we would have

o0) = [ s0pa

for all o(t) € D.

If s
exp(———s) j—a<t<a
p(t) = a? —t?
0 ; otherwise
,we have ‘
¢(0) = 1. : 6(t)ea:p(_—az)dt (2.2.3)
e a? — 2

—-a

If 6(t) were a locally integrable function, the right-hand side of (2.2.3)
converges to zero as ¢ — 0 . This would be contradiction. Hence , § is not a

regular distribution. It is singular distribution .

Definition 2.2.5 The sequence of distribution {u;}$ ; is said to converge in D’
if , for every ¢ in D, the sequence of number {< ug, >}, converge in the
ordinary sense of the convergence of numbers. The limit of {< ux, ¢ >}, which
we shall denote by < y, ¢ > defines a functional p acting on the space D. In this

case we shall also say that y is the limit in D’ of {11332, and we write klim i =
—C0

Theorem 2.2.1 If a sequence of distributions {ux}$, converges in D' to the
functional p , then 4 is also a distribution .In other words , the space D'is closed

under convergence .

Proof : See [8] page 37.



6

Definition 2.2.6 (The Differentiation of Distributions)

Let u be any distribution , then its derivatives is the distribution & defined
by

< (), () >=< p,—p (£)

for all ¢ € D ,where ¢’ denotes the ordinary classical derivative of the function ¢

In general , the kth-order of derivatives of a disribution 4 is- denoted by
1) and defined by

< p® o >=< p, (=)™ > for g € D.

Example 2.2.2
(1) The first derivative of the Dirac delta functional (§()) defined by
<M o> =<6, (—1)p’ >
=(-1)<6,¢ >
=~y (0)
forpeD.

(2) The kth—order of derivatives of the Dirac delta functional is denoted by 6
and defined by
<8 o> =< 8, (~1)F k) 5
= (~1)®y® (o)

for p e D

(3) H(t) is called the Heaviside function that defined by

1 fort>0
H{t) =
0 fort<0



7
The first derivative of the Heaviside function denoted by H'(t) and defined by

<H'(t),p>=< H(#),—¢ >

/ H(t)o'(t)dt
——fo o (t)at

= —(p(t))5°

= —p(00) + (0)
= ¢(0)
=<b,¢>.

Thus H =6 .

Definition 2.2.7 (The Multiplication of a Distribution by Infinitely Differentiable
Function)

Let o(t) be the infinitely differentiable function and define the product of
a(t) with any distribution p in D’ by

< op,p >=< p,onp > for all p € D.
Example 2.2.3

(1) < alt)b, p(t) > = < §,a(t)p(t) > by definition 2.2.7
= a(0)¢(0)
= pu(0) < 6, p(t) >
= < a{0)6, (t) >
Thus a(t)§ = a(0)é for all ¢ € D

(2) < t6,p(t) > = < §,tp(t) >
= 0¢p(0)
=0
= < 0,p(t) >
Thus té6 =0



(3) <t6M), (1) > = < 6D, t(t) >
=< 6, (-1)(tp(2)) D >
=< §,—p > — < 5t (t) >

=—(0)
=< =b, 0 >
Thus 61 = —§

(4) In general , t6(™) = —m§lm-1) m =123 ...

< 8™ (¢), p(t) > =< 5™)(8), to(t) >
=< 8(8), (=1)™(to(t)™ >
= (=)™ < 6(t), mp™-I(t) >
= (=1)"m < §(t), o™ D (t) >
= (=1)™m < (=1)= D1 (8), o(t) >
=< ~m6™ (), o(t) >

Thus t6(m) (¢) = —msm-1)(z)
Definition 2.2.8 (The space S of testing functions of rapid descent)

Let & is the collection of all complex valued functions ¢ on R which arc
infinitely differentiable and () in S satisfies the infinite set of inequalities

oM (8)] < Comk , —00 <t < 00

where m and & run through all nonnegative integers . Here the C,,,; are constants

(with respect to t) which depend upon m and k .

Note: D C 8.

Definition 2.2.9 (Convergence in & )

A sequence of functions {ik (£)}22; is said to converges in S if every functon
¢x(t) is in S and if , for each nonnegative m and % , the sequence {t" o)},
converge uniformly in R .
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Theorem 2.2.2 The space D is dense in the space S in the sense that for each ¢

in S there exists a sequence {(x(£)}32., with every wr(t) in D which converges in
S to (i) .

Proof : See [8] page 101 .

Definition 2.2.10 (The space S’ of distribution of slow growth)

A.distribution p is said to be of slow growth if it is a continuous linear
functional on the space S of testing functions of rapid descent (such distributions
are also called tempered distributions) . That is , a distribution {1+ of slow growth
is a rule that assigns a number < u, ¢ > to each % in § in such a way that the
following condition are fulfilled .

Linearity : If ¢y and ¢y are in S and if any numbers o and 8, then
< phopr + Bpr >= a < p,p01 > +0 < p, 09 >
Continuity : If {p,}$2, is any sequence that converges in S to zero , then
li =0
k?-lfé < B0k >

The space of all distribution of slow growth is denoted by 8. & is also
called the dual space of S.

Note: S isa proper subspace of D' .
2.3 Laplace transform of distribution

Definition 2.3.1 Let f(t) be a locally integrable function that satisfies the
following condition.
1. f(t) =0 for —oo < ¢ < T where T is a real constant,.
2. There exists a real number ¢ such that f(t)e~ is absolutely integrable
over —oo < x < c0.Then the Laplace transform of f(¢) is defined by

F(s)=L{f(t)} = /T ” f(t)e tdt (2.3.1)

where s is a complex variable. It can be shown that F(s) is an analytic function
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for the half-plane Re(s) > 0, , where o, is an abscissa of absolute convergence
for £{f(¢)} . Now (2.3.1) can be replaced by the notation

F(s)=L{f(t}} =< f(t), e > (2.3.2)

Suppose f(t) is a distribution , that is feD We try to define the Laplace
transfornr_l of right-side distributions . ,

Suppose f(t) is a distribution whose support is bounded on the left and
there exists a real number ¢ for which e—°t f(¢) is in the space S’ of a tempered
distributions . Define

F(sy = L{f (1)} =< ™" f(t), X (t)e= () (2.3.3)

where X (t) is any infinitely differentiable function which bounded support on the
left and equals to 1 over the neighborhood of support of HO!

For Re(s) > ¢, X(t)e~(*~9)* is a testing function in the space S of a testing
function of rapid descent. Equation (2.3.3) can be deduced to the definition

F(s) = L{f(t)} =< f(t), e~ > (2.3.4)

Then equation (2.3.4) possesses a sense , that is, the same notation as (2.3.2).
Now , F(s) is a function of s defined over the right-side half-plane
Re(s) > ¢, and Zemanian [8] has proved that F(s) is an analytic function in the

region of convergence Re(s) > oy , where o is the abscissa of convergence for
which e~ f(t) € §'.

Consider
Clesi) +eafa(8} = | et hi(t) + af)dt
= /°° e %tey fi (t)dt + /oo e_StCQfg(t)dt
T

T

=1 j;x} BHStfl(t)df + ca fToo e_Stfz(fJ)df:
= al{fi(®)} + c2L{f2(8)}.

Hence

Li{erfi(t) + e2fa()} = a1l L{A1(t)} + 2 L{f2(t)}. (2.3.5)
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Theorem 2.3.1 Let f(t) be a continuous function that satisfies condition of
definition 2.3.1 and let o, be the abcissa of absolute convergence for
L{f()} = F(s) . Then, F(s) is an analytic function for Re(s) > o, and

o0

FO(s)y= [ (-ty*f(t)e~**dt :Re(s) > o, (2.3.6)
T

Proof : See [8] page 215 .

Example 2.8.1
t"H t) 1
( = PSR Re(s) > 0,k =0,1,2,... , where

1 forte[0,00)
H(t) =
{ 0 forte€ (—o0,0)

1L

is a Heaviside function

Proof : By definition 2.3.1 , we obtain

t’“H ¢ 0 g=stik

1 oo
= -k_'/ 8_Sttkdt
*J0
Let z = st , then dx = sdt . So
tkH (t) _
g = [ Cpeaa

1 o0 k
—&

1
= Taril(k+1) ;Re(s)>0
Since I'(k + 1) = k!,
t*H (t) k!
U= ) = e

1

= 7T ; Re(s) >0
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Theorem 2.3.2 Suppose that £ is continuous and that ' is piecewise continuous
on any interval 0 < ¢t < A. Suppose further that there exist constant K, a, and M
such that |f(¢)| < Ke® for t < M . Then c{f (t)} exists for s > a , and moreover

L{f (&)} = sL{f()} - £(0) (23.7)
Proof : See [1] page 296.

Theorem 2.3.3 Suppose that the furction £ F e 7971 are continuous and

H

that £(") is piecewise continuous on any interval 0 < ¢ < A . Suppose further that
there exist constant k,a and M such that

IFO] < ke, £ ()] < ke, ..., |FD()| < ke® for ¢ > M.
Then L{f(™(t)} exists for s > a and is given by

LU} = L@} = 5" £(0) = o = 57" D(0) - £ D(0)  (2.3.8)

Proof : By mathematital induction ,
we let P(n) = L{FM(8)} = s"L{F(0)} — 51 £(0) — ... — s7=D(0) — £n=1)q)
for n = 1 and by theorem 2.3.2 , we canl see that P(1) is true .

Suppose P(k) is true. Next we want to show that P(k 1) is also true .
Consider '

LS ) = L0310 0)

= sL{f® @)} — F*)(0) by theorem 2.3.2

= s[s*L{f(t)} — 51 = ... — sfE=D(0) — fR-D)(0)] = B (q)

= s"HLL{f(t)} - 8*F(0) — ... — s2F*=D(0) — 5 £ D (0) - £0)(0)
Hence P(k +1) is true .

Then we obtain

L{f ™} = SL{f (D)} = 8" 71£(0) — ... — s£=D(0) — £m-D ()
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Corollary 2.3.1 Suppose that the function Fof sy =1 are continuous , and
that f(m ig piecewise continuous on any interval 0 < ¢ < A . Suppose
further that there exist constant k,a and M such that

IF(O)] < ke, |f (£)] < ke, ..., [FD()] < ke for ¢ > M.
Then L£{f™(t)} exists for s > @ and FO) = f(0)=...= f»-1 =0 and is given
by

L{FM @)} = s"L{ ()} - (239)

Example 2.8.2 The following formulas are the consequences of definition 2.3.1

1. L{6} =1 for —oo < Re(s) < oo and § is the Dirac delta functional

whost support concentrated on a single point.
2. L{6W)} = g% —00 < Re(s) < oo, k is a positive integer.

3. L{t* £ (1)} = (~1)*F®), Re(s) > oy, where f(t) is a distribution in the space
D, of distribution whose supports are bounded on the left.
4. L{f®)(t)} = s*F(s), Re(s) > o1, where f(t) € D},

tkecxt 1 ] . )
7 H(t)} = =T Re(s) > Re(a) and H(t) is the Heaviside function.

5. L{

Definition 2.3.2 (The inverse Laplace transform)

Let f(t) be a locally integrable function that satisfies the conditions of
definition 2.3.1, the inverse Laplace transform of F(s) , denote by L7{F(s)} and
defined by

. 1 etiy :
f@) = L7YF(s)} = 5= lim F(s)etds (2.3.10)

Tl y—o0 c—iy

where Re(s) > ¢ > o,
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Example 2.3.3

g 1 H(t)t*
1. £ 1{3k+1}= (k') ; Re(s)>0

2. L7} =60 —~ 0 < Re(s) < o0

Lemma 2.3.1 Assume that over the half-plane Re(s) > a , F(s) is analytic and

satisfies the inequality

|F(s)| < ECF (2.3.11)

where c is a constant .

If the integral L=*{F(s)} is taken over some vertical line in the half-plane
Re(s) > a , L7HF(s)} = f(t) exists and is a continuous function for all ¢ and
fit)=0fort<0.

Proof : See [8] page 217.

Lemma 2.3.2 Let F(s) be a function that is analytic over a half-plane Re(s) > a
and is bounded according to [F(s)] < P(|s|), Re(s) > ¢ where P(|s|) is some
polynomial in |s| . Then , F(s) is the Laplace Transform of a distribution F{®)
whose support is bounded on the left at ¢t = 0 .

Proof : See [8] page 236 .



