CHAPTER 3 MAIN RESULTS

Theorem

The types of solutions of the fourth order Euler equation of the form

$$t^{4}y^{(4)}(t) + t^{3}y^{"'}(t) + m_{2}t^{2}y^{"}(t) + m_{1}ty^{'}(t) + m_{0}y(t) = 0$$
(3.1)

where m_0, m_1 and m_2 are some integers, relating on the lattice plane which can be classified by the following cases.

Case 1 If the lattice plane is $m_0 = km_1 - (k^2 + k)m_2 - (k^4 + 5k^3 + 8k^2 + 4k)$ where k = 1, 2, ..., then (3.1) has the weak solution $y(t) = \delta^{(k-1)}(t)$.

Case 2 If the lattice plane is $m_0 = -km_1 - (k^2 - k)m_2 - (k^4 - 5k^3 + 8k^2 - 4k)$ where k = 0, 1, 2, ..., then (3.1) has the strong solution $y(t) = \frac{H(t)t^{k+1}}{(k+1)!}$, where H(t) is a Heaviside function.

Proof:

By taking the Laplace transform to equation (3.1), we obtain

$$\mathcal{L}\{t^{4}y^{(4)}(t) + t^{3}y^{'''}(t) + m_{2}t^{2}y^{''}(t) + m_{1}ty^{'}(t) + m_{0}y(t)\} = \mathcal{L}\{0\}$$

$$\mathcal{L}\{t^{4}y^{(4)}(t)\} + \mathcal{L}\{t^{3}y^{'''}(t)\} + \mathcal{L}\{m_{2}t^{2}y^{''}(t)\} + \mathcal{L}\{m_{1}ty^{'}(t)\} + \mathcal{L}\{m_{0}y(t)\} = 0$$

By using Example 2.3.2 (3) and (4), we obtain

$$(-1)^{4} \frac{d^{4}}{ds^{4}} \mathcal{L}\{y^{(4)}(t)\} + (-1)^{3} \frac{d^{3}}{ds^{3}} \mathcal{L}\{y^{"'}(t)\} + m_{2}(-1)^{2} \frac{d^{2}}{ds^{2}} \mathcal{L}\{y^{"}(t)\} + m_{1}(-1) \frac{d}{ds} \mathcal{L}\{y^{'}(t)\} + m_{0} \mathcal{L}\{y(t)\} = 0$$

or

$$\frac{d^4}{ds^4}s^4Y(s) - \frac{d^3}{ds^3}s^3Y(s) + m_2\frac{d^2}{ds^2}s^2Y(s) - m_1\frac{d}{ds}sY(s) + m_0Y(s) = 0.$$
 (3.2)

Consider

$$\frac{d}{ds}sY(s) = sY'(s) + Y(s) \tag{3.3}$$

and

$$\frac{d}{ds}s^{2}Y(s) = s^{2}Y'(s) + 2sY(s)$$

$$\frac{d^{2}}{ds^{2}}s^{2}Y(s) = s^{2}Y''(s) + 4sY'(s) + 2Y(s)$$
(3.4)

and

$$\frac{d}{ds}s^{3}Y(s) = s^{3}Y'(s) + 3s^{2}Y(s)$$

$$\frac{d^{2}}{ds^{2}}s^{3}Y(s) = s^{3}Y''(s) + 3s^{2}Y'(s) + 3s^{2}Y'(s) + 6sY(s)$$

$$= s^{3}Y''(s) + 6s^{2}Y'(s) + 6sY(s)$$

$$\frac{d^{3}}{ds^{3}}s^{3}Y(s) = s^{3}Y'''(s) + 9s^{2}Y''(s) + 18sY'(s) + 6Y(s)$$
(3.5)

and

$$\frac{d}{ds}s^{4}Y(s) = s^{4}Y'(s) + 4s^{3}Y(s)$$

$$\frac{d^{2}}{ds^{2}}s^{4}Y(s) = s^{4}Y''(s) + 8s^{3}Y'(s) + 12s^{2}Y(s)$$

$$\frac{d^{3}}{ds^{3}}s^{4}Y(s) = s^{4}Y'''(s) + 12s^{3}Y''(s) + 36s^{2}Y'(s) + 24sY(s)$$

$$\frac{d^{4}}{ds^{4}}s^{4}Y(s) = s^{4}Y^{(4)}(s) + 16s^{3}Y'''(s) + 72s^{2}Y''(s) + 96sY'(s) + 24Y(s)$$
(3.6)

Substitute (3.3), (3.4), (3.5) and (3.6) into (3.2), we obtain

$$[s^{4}Y^{(4)}(s) + 16s^{3}Y'''(s) + 72s^{2}Y''(s) + 96sY'(s) + 24Y(s)]$$

$$-[s^{3}Y'''(s) + 9s^{2}Y''(s) + 18sY'(s) + 6Y(s)] + m_{2}[s^{2}Y''(s) + 4sY'(s) + 2Y(s)]$$

$$-m_{1}[sY'(s) + Y(s)] + m_{0}Y(s) = 0$$

$$s^{4}Y^{(4)} + 15s^{3}Y^{"'}(s) + (63 + m_{2})s^{2}Y^{"}(s) + (78 + 4m_{2} - m_{1})sY^{'}(s) + (18 + 2m_{2} - m_{1} + m_{0})Y(s) = 0$$

$$(3.7)$$

Let a solution of equation (3.7) be $Y(s) = s^r$, where r is any real constant. So

$$Y'(s) = rs^{r-1}$$

$$Y''(s) = r(r-1)s^{r-2}$$

$$Y'''(s) = r(r-1)(r-2)s^{r-3}$$

$$Y^{(4)}(s) = r(r-1)(r-2)(r-3)s^{r-4}$$

Substitute Y(s), Y'(s), Y''(s), Y'''(s) and $Y^{(4)}(s)$ into (3.7), then we obtain

$$s^{4}r(r-1)(r-2)(r-3)s^{r-4} + 15s^{3}r(r-1)(r-2)s^{r-3} + (63+m_{2})s^{2}r(r-1)s^{r-2} + (78+4m_{2}-m_{1})srs^{r-1} + (18+2m_{2}-m_{1}+m_{0})s^{r} = 0$$

Since $s^r \neq 0$, then

$$r(r-1)(r-2)(r-3) + 15r(r-1)(r-2) + (63 + m_2)r(r-1) + (78 + 4m_2 - m_1)r + (18 + 2m_2 - m_1 + m_0) = 0$$

or

$$r^4 + 9r^3 + (29 + m_2)r^2 + (39 + 3m_2 - m_1)r + (18 + 2m_2 - m_1 + m_0) = 0. (3.8)$$

Consider the value of r is the following 2 cases.

Case 1 If r = 0, 1, 2, ..., then by (3.8), we obtain

If
$$r = 0$$
, then $m_0 = m_1 - 2m_2 - 18$

If
$$r = 1$$
, then $m_0 = 2m_1 - 6m_2 - 96$

If
$$r = 2$$
, then $m_0 = 3m_1 - 12m_2 - 300$

If
$$r = 3$$
, then $m_0 = 4m_1 - 20m_2 - 720$

If
$$r = 4$$
, then $m_0 = 5m_1 - 30m_2 - 1470$

If
$$r = 5$$
, then $m_0 = 6m_1 - 42m_2 - 2688$

By induction, we obtain If r = k - 1, then

$$m_0 = km_1 - (k^2 + k)m_2 - (k^4 + 5k^3 + 8k^2 + 4k)$$
(3.9)

Since $Y(s) = s^r$, the solution of (3.7) are

or

$$Y(s) = s^r = s^{k-1}$$
 where $k = 1, 2, 3, ...$
 $Y(s) = 1, s, s^2, s^3, ...$ respectively.

By taking the inverse Laplace transform to Y(s) and by Example 2.3.3 (2), we obtain the solution of (3.1) which are the singular distributions

$$y(t) = \mathcal{L}^{-1}{Y(s)} = \delta^{(k-1)}(t)$$
 where $k = 1, 2, 3, ...$
 $y(t) = \delta, \delta^{(1)}, \delta^{(2)}, ..., \delta^{(k-1)}$

where $\delta^{(k-1)}$ is defined as Example 2.2.2

Then we obtain the singular distribution solution

 δ corresponding to $m_0 = m_1 - 2m_2 - 18$

- $\delta^{(1)}$ corresponding to $m_0=2m_1-6m_2-96$
- $\delta^{(2)}$ corresponding to $m_0 = 3m_1 12m_2 300$
- $\delta^{(3)}$ corresponding to $m_0 = 4m_1 20m_2 720$

$$\delta^{(k-1)}$$
 corresponding to $m_0 = km_1 - (k^2 + k)m_2 - (k^4 + 5k^3 + 8k^2 + 4k)$

Case 2 If r = -1, -2, -3, ..., then from (3.8), we obtain

If
$$r=-1$$
, then $m_0=0$

If
$$r=-2$$
 , then $m_0=-m_1$

If
$$r=-3$$
, then $m_0=-2m_1-2m_2$

If
$$r = -4$$
, then $m_0 = -3m_1 - 6m_2 - 6$

If
$$r = -5$$
, then $m_0 = -4m_1 - 12m_2 - 48$

By induction , we obtain If r=-(k+1) , then $m_0=-km_1-(k^2-k)m_2-(k^4-5k^3+8k^2-4k)$ (3.10)

Since $Y(s) = s^r$, the solution of (3.7) are

$$Y(s) = s^r = s^{-(k+1)} \text{ where } k = 0, 1, 2, 3, \dots$$
 or
$$Y(s) = s^{-1}, s^{-2}, s^{-3}, \dots = \frac{1}{s}, \frac{1}{s^2}, \frac{1}{s^3}, \dots \text{ respectively}$$

Similarly , take the inverse Laplace transform to Y(s) and by Example 2.3.3 (1) , we obtain the solution of (3.1)

$$y(t) = L^{-1}\{Y(s)\} = \frac{H(t)t^{k+1}}{(k+1)!}$$

for $k=0,1,2,\dots$

We obtain the classical solution of (3.1):

H(t)t corresponding to $m_0=0$

$$H(t)\frac{t^2}{2!}$$
 corresponding to $m_0 = -m_1$

$$H(t)\frac{t^3}{3!}$$
 corresponding to $m_0=-2m_1-2m_2$

$$H(t)\frac{t^4}{4!}$$
 corresponding to $m_0 = -3m_1 - 6m_2 - 6$

$$H(t)\frac{t^{k+1}}{(k+1)!}$$
 corresponding to $m_0 = -km_1 - (k^2 - k)m_2 - (k^4 - 5k^3 + 8k^2 - 4k)$

That completes the proof of this Theorem

Δ

The equation (3.9) and (3.10) are called Lattice Plane of the fourth order Euler equation (3.1) and can be shown by the following graphic.

m_0 = m_1 - 2m_2 - 18 corresponding to r=0

m_0 = 2m_1 - 6m_2 - 96 corresponding to r=1

m_0 = 3m_1 - 12m_2 - 300 corresponding to r=2

m_0 = 4m_1 - 20m_2 - 720 corresponding to r=3

m_0 = 5m_1 -30 m_2 - 1470 corresponding to r=4

m_0 = 0m_1 - 0m_2 -0 corresponding to r=-1

m_0 = -2m_1 - 2m_2 -0 corresponding to r=-3

m_0 = -3m_1 - 6m_2 - 6 corresponding to r=-4

m_0 = -4m_1 - 12m_2 - 48 corresponding to r=-5

