CHAPTER 3
MAIN RESULTS

Theorem

The types of solutions of the fourth order Euler equation of the form

thy @ (8) + 2" () + mat2y” (@) + maty (¢) + moy(®) = 0 (3.1)

where mg, m; and mgy are some integers , relating on the lattice plane which can
be classified by the following cases.

Case 1 If the lattice plane is mo = krny — (k2 + k)ma — (k% + 5k3 + 8k2 + 4k)
where k = 1,2, ... ,then (3.1) has the weak solution y(t) = §(*=1(z) .

Case 2 If the lattice plane is mg = —kmy — (k? — k)mg — (k* — 5k3 + 8k2 — 4k)
H(t)th+1

where k =0,1,2,..., then (3.1) has the strong solution y(t) = ®+

where H(t) is a Heaviside function .

Proof :

By taking the Laplace transform to equation (3.1) , we obtain
L{HY @) + %7 (1) + mat®y” () + maty () + moy(0)} = £{0}

L{EY O} + L{E%Y " (1)) + L{mat®y" ()} + LImaty (¢)} + L{moy(t)} = 0

By using Example 2.3.2 (3} and (4) , we obtain
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g (~1) 2 £{y () +moL{y(0) =0
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or
d* d? d? d
@34}’(3) — 3—5331’(3) + My 258 s2Y(s) — my EESY(S) +moY (s) =0. (3.2)
Consider
d y
5¥ () = 5Y'(5) + Y (5 (33)
and
d%szY(.s) = s%Y " (s) + 25Y (s)
d2 r I
a;i;s Y(s)=s*Y (s)+4sY (s)+ 2Y (s) (3.4)
and
583}’(3) = %Y (s) + 352Y (s)
d? y
pr s%Y (s) = s°Y" (s) + 3s2Y" (s) + 352" (5) + 6sY (s)
= 53" (s) + 6s2Y" (8) + 6sY ()
43
- Y (s) = Y (5) + 95%Y" (s) + 185Y (5) + 6¥ (s) (3.5)
and
d 4 4y’ 3
R Y(s) = s*Y (s) +4s°Y (s)
2
53—2341/(3) = 5*Y"(s) + 853V () + 1252V (s)
3
; 55*Y (s) = s*Y" (5) + 12s3Y" (s) + 365%Y (s ) + 24sY(s)
4
&%s Y(s) = s*Y#(s) + 165°Y" (s) + 72527 (s) + 965Y" (s} + 24Y (s)

(3.6)
Substitute (3.3) , (3.4) , (3.5} and (3.6) into (3.2) , we obtain

1

[s*Y 1) (s) + 16537 (s) + 7252V () + 9657 (5) + 24Y (s)]
—[*Y" () + 95%Y" (s) + 185Y " (s) + 6Y (5)] +ma[s?Y" (s) + 4sY" () + 2 (s)]
—my [sY” (s) + Y (s)] + moeY (s) =0
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1Y@ 1 158%Y " (5) + (63 + mg)s?Y” (s) + (78 + dimg — my)sY (s)
+ (18 4+ 2ma — m1 + mp)Y (5) = 0 (3.7)

Let a solution of equation (3.7) be Y (s) = s”,where r is any real constant. So
Y (s) = rer1

e

Y (s)=r(r—1)s2
Y (s) = r(r - 1)(r — 2)s7—3
YW () =r(r - 1)(r - 2)(r — 3)s™4
Substitute ¥'(s), Y (s),Y" (s),Y" (s) and Y4 (s) into (3.7),then we obtain

s*r(r = 1)(r — 2)(r — 8)s"~* + 155%r(r — 1)(r — 2)s"—2 + (63 + ma)s?r(r — 1)s™2
+(78 + dmg — ml)STSr_l + (18 +2mse —my + mo)s’" =0

Since s” # 0, then
r(r = 1)(r = 2)(r = 3) + 15r(r — 1)(r = 2) + (63 + ma)r(r — 1)
+(78+4m2 —ml)'r+(18+2m2 - M +mo) =0

or

r -+ 9r% 4+ (29 4 ma)r® + (39 + 3ma — mu)r + (18 + 2mg — my +mg) = 0. (3.8)

Consider the value of r is the following 2 cases.

Case 1 If 7 =0,1,2,..., then by (3.8) , we obtain
If r =0, then mg = my — 2mg — 18
If r =1, then mg = 2m; — 6mg — 96
If r =2, then mg = 3m; — 12mq — 300
If r =3, then mg = 4m; — 20mq — 720
If r =4, then mp = 5m; — 30moy — 1470

If r =5, then mg = 6my — 42m+ — 2688

By induction , we obtain If r = k — 1 ,then

mo = kmy — (k% + k)ma — (k* + 5k° + 8k2 + 4k) (3.9)
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Since Y'(s) = s™ , the solution of (3.7) are

Y(s) =s" = s*~1 where k = 1,2,3, ...

or Y(s) = 1,s, 52,55, ... respectively.

By taking the inverse Laplace transform to Y(s) and by Example 2.3.3 (2)
obtain the solution of (3.1) which are the singular distributions

, we

y(t) = L7HY (s)} = 651} (¢) where k = 1,2, 3, ..
y(t) = 6,6(1),63) .. §-1)
where §~1) is defined as Example 2.2.2

Then we obtain the singular distribution solution
& corresponding to mg = m; — 2mg — 18

§() corresponding to mg = 2my — 6mog — 96

6®) corresponding to mg = 3m; — 12mg — 300
&) corresponding to mg = 4m; — 20mg — 720

§(k=1) corresponding to mo = kmy — (k2 + k)mg — (k* + 5k% + 82 + 4k)

Case 2 If r = —1,-2, -3, ..., then from (3.8) , we obtain
If r=-1,then mg=0
If r=—2, then mg = —m,
If r = -3, then mg = —2m; — 2ma
If r=—4, then mg = ~3m; — 6mg — 6
If r=-5, then mg = —4m; — 12mo — 48

By induction , we obtain If r = —(k +1) , then mg = ~km; — (k2 — k)mg — (k* —
5k3 + 8k2 — 4k) (3.10)

Since Y'(s) = s” , the solution of (3.7) are

Y(s)=s"=s"(*t1) where k =0,1,2,3, ...
11 1 .
or Y(s)=s5"1,52%s3 ... = PRl T TR respectively
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Similarly , take the inverse Laplace transform to Y (s) and by Example 2.3.3
(1) , we obtain the solution of (3.1)

a H(t)tk+1
Yy =LYy = ——
vo) = LY (a)) = T
for k=0,1,2,..
We obtain the classical solution of (3.1):
H(t)t corresponding to mg = 0
t2
H (t)iT corresponding to mg = —my
t3
H (t)ﬁ corresponding to mg = —2m; — 2mo
4
H (t)a—' corresponding to mg = —3my — 6mg — 6
tk+1

H(t)m corresponding to mo = ~km; — (k? — k)my — (k* - 5k3 + 8k2 — 4k)

That completes the proof of this Theorem A

The equation (3.9) and (3.10) are called Lattice Plane of the fourth order Euler
equation (3.1) and can be shown by the following graphic .
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3m_1 -12m_2 - 300 correspond
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m_0 =85m_1 -30 m_2 - 1470 correspending to r=4
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