TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	iv
THAI ABSTRACT	vi
LIST OF TABLES	xi
LIST OF ILLUSTRATIONS	x
ABBREVIATIONS	xii
CHAPTER I. INTRDUCTION	
1.1 Statement of the problem	1
1.2 Literature review	
1.2.1 Articular cartilage	3
1.2.2 Structural organization of articular cartilage and	
extracellular matrix	4
1.2.3 Articular cartilage metabolism	20
1.2.4 degenerative joint diseases	21
1.2.5 Biochemical marker of joint diseases	29
1.2.6 Monoclonal antibodies directed against proteoglycan	
epitope	31
1.2.7 Clinical application of hyaluronan-binding proteins	34
1.3 Objective of the study	35
CHAPTER II. MATERIALS AND METHODS	
2.1 MATERIALS	
2.1.1 Chemical reagents	36
2.1.2 Experimental instruments	37
2.1.3 Serum subjects	38
2.2 METHODS	
2.2.1 Proteoglycan preparation	39
2.2.2 Isolation and purification of HABPs	

2.2.2.1 Isolation and purification of A1	39
2.2.2.2 Isolation and purification of HABPs	39
2.2.3 Monoclonal antibody 1H8 preparation	
2.2.3.1 Cell culture procedure	43
2.2.3.2 Monoclonal antibody 1H8 purification	43
2.2.4 Optimization of competitive ELISA conditions	
2.2.4.1 Optimization for coating microtiter plate PGs	
concentration	44
2.2.4.2 Optimization for monoclonal antibody 1H8	
concentration in inhibition mixture	44
2.2.4.3 Optimization for standard inhibitor condition	45
2.2.4.4 Optimization for Anti-mouse IgM peroxidase	
conjugate concentration	45
2.2.4.5 Optimization for PBS and 6% BSA condition	45
2.3 Analytical method	
2.3.1 Bradford assay	46
2.3.2 Electrophoresis	46
2.3.3 Immunoblotting	46
2.4 Evaluation for accuracy and precision of developed method	
2.4.1 Intra assay and inter assay variation	47
2.4.2 Recovery assay	47
2.5 Application of developed method for clinical	47
2.6 Statistical analysis	48
CHAPTER III. RESULTS	
3.1 Isolation and purification of hyaluronan binding proteins	49
3.2 Antibody purification	49
3.3 Optimal concentration of PGs for microtiter plate coating	53
3.4 Optimization for mAb 1H8 concentration in inhibition	
mixture	53
3.5 Optimization for standard inhibitor condition	53

3.6 Optimization for anti-mouse IgM peroxidase conjugate	
concentration	53
3.7 Optimization for PBS and 6%BSA condition54	54
3.8 The precision and accuracy of HABPs measurment	54
3.9 Application of newly develop method for HABPs	
determination	63
3.10 Assessment of HABPs in serum	69
CHAPTER IV. DISCUSSION	73
CONCLUSION	77
REFERENCE	78
APPENDIX	87
CURRICULUM VITAE	90

LIST OF TABLES

Table Table	Page
1. Structural and functional diversity of glycosaminoglycans	10
2. Structural macromolecules of adult articular cartilage matrix	14
3. Some of the most abundant HA-binding proteins and their	
different characteristics	17
4. Comparison of osteoarthritis and rheumatoid arthritis	28
5. Molecular markers of cartilage metabolism	30
6. Monoclonal antibodies directed against the polysaccharide	
attachment region of cartilage proteoglycan	33
7. IC 50 of various inhibitors react with mAb 1H8	58
8. Evaluation of immunoassays	62
9. Recovery of shark A1 added to serum	62
10. The amount of HABPs and HA in sera samples of healthy people,	
osteoarthritis, and rheumatoid arthritis	68

LIST OF ILLUSTRATION

F	igure —	Page
	1. Model of articular cartilage joint	5
	2. Histologic section of normal adult articular cartilage	6
	3. Organization of extracellular matrix of articular cartilage	7
	4. Major types of glycosaminoglycans	9
	5. Diagram depicting the various stages involved aggrecan	
	and link protein metabolism	13
	6. The hyaluronan-binding family of protein related to aggrecan	18
	7. Cartilage proteoglycan structure	19
	8. A schematic representation of the metabolic events controlling the	
	proteoglycans in cartilage.	22
	9. Diagrammatic representation of the organization of the proteoglycan	L
	aggrecan and type II collagen fibrils in cartilage matrix	23
	10. Diagrammatic representation of zones of normal cartilage	
	and joint disease	26
	11. Diagrammatic representation of healthy, rheumatoarthritic,	
	osteoarthritic joints	27
	12. Procedures for the isolation of HABPs from cartilage	42
	13. Purification of bovine HABPs by affinity column chromatography	50
	14. Purification of shark HABPs by affinity column chromatography	51
	15. Elution profile obtained from T-Gel chromatography for	
	mAb purification	52
	16. Direct cheqerboard using shark PGs as antigen plate coating	55
	17. Optimal concentration of mAb 1H8	56
	18. Enzyme-linked immunosorbant inhibitory assay for	
	1H8 epitope	57
	19. Optimal concentration of anti-mouse IgM peroxidase conjugate	59

xiii

20. The assessment of diluents effect for standard inhibitor	
in inhibition mixture	60
21. A typical standard curve using shark A1 by competitive	
inhibition ELISA assay	61
22. Concentration of HABPs in healthy human sera compared	
with OA and RA sera	64
23. Correlation between concentration of HA and HABPs	
in healthy sera samples	65
24. Correlation between concentration of HA and HABPs	
in OA sera samples	66
25. Correlation between concentration of HA and HABPs	
in RA sera samples	67
26. Standard curve of high molecular weight	70
27. Analysis HABPs in Serum by using Native - PAGE	71
28. Analysis HABPs in Serum by using b-HA	72

ABBREVIATIONS

A1 Associated form 1

b-HA biotinylated-hyaluronan

BSA bovine serum albumin

CRP C-reactive protein

CS chondroitin sulfate

CsCl cesium chloride

CV coefficient of variation

DAB 3,3'-diaminobenzidine

DS dermatan sulfate

ECM extracellular matrix

EDAC 1-ethyl-3-(-3-dimethylamino-proply)

carbodiimine

EGF epidermal growth factor

ESR erythrocyte sedimentation rate

ELISA enzyme-linked immunosorbent assay

gram

GAGs glycosaminoglycans

Gal galactose

GalNAc N-acetylgalactosamine

GlcA glucuronic acid

GlcNAc N-acetylglucosamine

GM-CSF granulocyte-macrophage colony-

stimulating factor

GuHCl guanidine hydrochloride

HA hyaluronan

HABPs hyaluronan-binding proteins

HAT medium hypoxanthine-aminopterin-thymidine

medium

HS heparan sulfate

IGD interglobular domain

IGF-I insulin-like growth factor-I

IgM immunoglobulin M

IL-1β Interleukin-1β

IMDM Iscove's Modified Dulbecco's Medium

kD kilodalton

KS keratan sulfate

L Liter

LIF leukocyte inhibitory factor

LPS lipopolysaccharide

M molar

mAb monoclonal antibody

min minute milliliter

MMP metalloproteinase

mg milligram

MW molecular weight

n number

NaCl sodium chloride

NaHCO₃ sodium bicarbonate

NB non-bound nanogram
OA osteoarthritis

PAGE polyacylamide gel electrophoresis

PBS phosphate buffer saline

PGE prostaglandin E
PGs proteoglycans

r

PTRs Proteoglycan tandem repeats

correlation coefficient

RA

RHAMM

SD

SHAP-HA

TEMED

 $TNF\text{-}\alpha$

TSG-6

Tween 20

v/v

 ^{0}C

μg

μl

rheumatoid arthritis

receptor for HA-mediated motility

standard deviation

serum derived hyaluronan-associated

protein-hyaluronan

N,N,N',N'-tetra-methyl-ethylenediamine

tumor necrosis factor-α

tumor necrosis factor stimulated gene-6

polyoxyethylene sorbitan monolaurate

volume by volume

degree Celsius

microgram

microliter