TABLE OF CONTENTS

Title	Page
Acknowledgements	iii
Abstract (English)	iv
Abstract (Thai)	vi
List of Tables	xiii
List of Illustrations	xiv
Abbreviations	xvii
Chapter 1 Introduction	
1.1) Lipases	1
1.1.1) Lipases	1
1.1.2) Screening for lipase activity	3
1.1.3) Catalytic mechanism	5
1.1.4) Application of lipases	7
1.2) Recombinant DNA technology	18
1.2.1) Plasmid cloning vectors	19
1.2.2) Transformation and selection	20
1.2.3) Polymerase chain reaction (PCR)	21
1.2.4) Mutagenesis	22
1.3) Protein purification	24
1.4) Literature reviews	25
1.5) Purpose of the study	32

Ti	tle	Page
Chapter 2	Materials and methods	
2.1) Mate	erials	33
2.1.1)	Chemicals	33
2.1.2)	Primers	34
2.1.3)	Equipments	35
2.1.4)	Microorganisms	37
2.2) Cult	ivation	37
2.2.1)	Cultivation of cloned lipase P1 in E. coli DH5α	37
2.2.2)	Extraction of cloned lipase	38
2.3) Mole	ecular cloning	38
2.3.1)	Extraction of plasmid DNA	38
2.3.2)	PCR clean up	41
2.3.3)	Polymerase chain reaction (PCR) amplification	42
2.3.4)	Digestion DNA with restriction enzymes	42
2.3.5)	Ligation	43
2.3.6)	Transformation of competent E. coli M15[pREP4] and	
	JM109	43
2.3.7)	Checking the inserted DNA	45
2.3.8)	Agarose gel electrophoresis	46
2.3.9)	Expression of a recombinant protein	47
2.4) Struc	ctural modeling	48
2.4.1)	Secondary structure prediction and hydrophobicity profile	48
2.4.2)	Homology modeling and computer graphic study of the	
	lipase structure	49
2.4.3)	Site-directed mutagenesis	50
2.5) Purif	fication	52
2.5.1)	Ammonium sulphate precipitation	52
2.5.2)	Ultrafiltration	53
2.5.3)	Dialysis	53

Ti	Title	
254)	Strong anion exchange chromatography	EE
		55
	Gel filtration chromatography SDS-PAGE	56
,		58
	Western blotting	61
2.6) Lipa	·	62
•	ein determination	64
-	racterization of the recombinant lipase	64
, i	Effect of pH on the lipase activity and stability	64
2.8.2)	Effect of temperature on the lipase activity and stability	65
2.8.3)	Substrate specificity	65
2.8.4)	Kinetic study of lipase	66
2.8.5)	Positional specificity	66
2.8.6)	Effect of metal ions on lipase activity	67
2.8.7)	Effect of inhibitors on the lipase activity	67
2.8.8)	Effect of detergents on lipase stability	68
2.8.9)	Effect of organic solvents on the lipase stability	68
2.8.10) Crystallization	69
2.9) Chir	al separation of lipase	70
Chapter 3	Results	
•		70
·	ing of the lipase gene	72
	Determination of the nucleotide sequence of the lipase P1	72
-	Digestion with restriction enzymes	72
	Ligation, transformation and screening of recombinant lipase	74
3.1.4)	Nucleotide sequence and NH ₂ -terminal amino acid sequence of	
	the lipase gene cloned in E. coli M15[pREP4] using pQE-60	
	vector	76
3.2) Expr	ression of the lipase gene in E. coli	77
3.3) Seco	ndary structure prediction and solvent accessibility	79

	Tit	le	Page
3.4)	Hom	ology modeling and computer graphics of lipase	81
3.5)	Site-	directed mutagenesis	85
3.6)	Purif	ication of a thermostable lipase	87
3.7)	Char	acterization of the purified lipase	94
3	.7.1)	Effect of pH on the lipase activity and stability	94
3	5.7.2)	Effect of temperature on the lipase activity and stability	94
3	.7.3)	Substrate specificity	97
3	.7.4)	Study of kinetic parameters (K_m and V_{max}) of the lipase	98
3	5.7.5)	Positional specificity	100
3	5.7.6)	Effect of metal ions on the lipase activity	101
3	3.7.7)	Effect of inhibitors on the lipase activity	102
3	3.7.8)	Effect of detergents on the lipase stability	103
3	3.7.9)	Effect of organic solvents on the lipase stability	104
3	.7.10)	Crystallization of the lipase	105
3	3.7.11)	Comparison of the lipase structure from the structural	
		modeling and X-ray crystallography	106
3.8)	Chira	al separation of lipase	108
Chap	oter 4	Discussion and Conclusion	
4.1)	Clon	ing and overexpression of the lipase gene from	
	B. ste	earothermophilus P1	114
4.2)	Seco	ndary structure prediction and structural modeling of a	
	thern	nostable lipase	116
4.3)	Purif	ication and characterization of a thermostable lipase	117
4.4)	Appl	ication of a thermostable lipase	120
4.5)	Conc	clusions	121

•	Title	Page
Referen	nces	124
Append	lix: Supporting Papers	137
1.	Optimization of a Thermostable Lipase from Bacillus	
	stearothermophilus P1: Overexpression, Purification, and	
	Characterization.	138
2.	Structural Modeling and Characterization of a Thermostable lipase	
	from Bacillus stearothermophilus P1.	149
3.	Expression, purification, crystallization and preliminary	
	crystallographic analysis of a thermostable lipase from Bacillus	
	stearothermophilus P1.	157
4.	Characterization and Application of Purified Lipase from Bacillus	
	stearothermophilus P1.	166
Vita		182

LIST OF TABLES

Гable		Page
1.1	Microbial lipases used as additives in household detergent	10
1.2	Bictechnological applications of bacterial lipases	12
2.1	All primers were used in the experiments	35
2.2	Amplification step for site-directed mutagenesis by using PCR	51
3.1	Comparison of the expressions of the native lipase P1 and the	
	recombinant lipase P1 in the different vectors and hosts	78
3.2	Comparison of the lipase activities between the pQE-P1 and the	
	mutant lipases	86
3.3	Summary of the purification of a thermostable lipase from	
	B. stearothermophilus P1 (1st procedure)	88
3.4	Summary of the purification of a thermostable lipase from	
	B. stearothermophilus P1 (2 nd procedure)	93
3.5	The initial velocity (V _i) of the enzyme reaction using various	
	substrate concentrations (S)	98
3.6	Effect of metal ions on the purified lipase	101
3.7	Effect of inhibitors on the purified lipase	102
3.8	Effect of detergents on the purified lipase	103
3.9	Effect of organic solvents on the purified lipase	104
3 10	Crystallographic statistics for B. stearothermophilus P1 lipase	106

LIST OF ILLUSTRATIONS

Figure		Page
1.1	Enzymatic reaction of a lipase catalyzing hydrolysis or synthesis	
	of a triacylglycerol substrate	. 1
1.2	Reaction mechanism of lipases	6
1.3	Industrially important reactions catalyzed by a lipase	9
3.1	Nucleotide sequence of the lipase gene from B. stearothermophilus	
	P1 cloned in E. coli DH5α using pUC-19 vector and its deduced	
	amino acid sequence	73
3.2	Agarose gel electrophoresis shows the digestion of the lipase	
	gene with restriction enzymes	74
3.3	Screening of recombinant lipase cloned in E. coli M15[pREP4] using	
	pQE-60 as an expression vector on agarose gel electrophoresis	75
3.4	Physical map of inserted lipase P1 after cloning of partial Nco I and	
	Hind III fragments into pQE-60	76
3.5	Nucleotide sequence of the lipase gene from B. stearothermophilus	
	P1 cloned into E. coli M15[pREP4] using pQE-60 as an expression	
	vector	77
3.6	Expression of the cloned lipase from B. stearothermophilus P1 by	
	IPTG induction	79
3.7	Secondary structure prediction, hydropathy profile, transmembrane	
	and surface probability of a thermostable lipase gene from	
	B. stearothermophilus P1	80
3.8	The pair wise alignment of model sequence of B. stearothermophilus	
	P1 lipase (TLip) with reference models of lipases from P. glumae	
	(1TAH) and P. cepacia (3LIP)	82

Figure	Figure	
3.9	The 3D structures of modeled lipase from B. stearothermophilus P1	83
3.10	SDS-PAGE shows the induction of cloned lipase P1 (pQE-P1) and	
	its mutants	86
3.11	FPLC with Q HyperD anion-exchange chromatography of the	
	purified lipase produced from B. stear other mophilus P1	88
3.12	SDS-PAGE of purified lipase from B. stearothermophilus P1	89
3.13	The calibration curve of molecular weight of protein standard by	
	using SDS-PAGE	89
3.14	Mass spectrometry of the purified B. stearothermophilus P1 lipase	90
3.15	Analysis of the purity of the purified lipase P1 by HPLC	90
3.16	Purification of the lipase by perfusion chromatography with Poros	
	20 HQ column (4.6 x 100 mm) using a BioCAD workstation	92
3.17	Purification of the lipase by gel filtration chromatography with	
	Sephacryl S-200HR column (1.6×100 cm)	92
3.18	SDS-PAGE of purified lipase from B. stearothermophilus P1	93
3.19	Effect of pH on lipase activity (A) and stability (B)	95
3.20	Effect of temperature on lipase activity and stability	96
3.21	Substrate specificity of the lipase using several p-NP esters	
	and triacylglycerols	97
3.22	Michaelis-Menten type plot of lipase hydrolysis rate at different	
	concentrations of p-NP caprate	99
3.23	Lineweaver-Burk plot between 1/initial velocity of reaction versus	
	1/ concentrations of p-NP caprate	99
3.24	Thin layer chromatography of the hydrolysis of the cloned lipase P1	
	on triolein substrates	100
3.25	Crystallization of the thermostable lipase from B. stearothermophilus	
	P1	105
3.26	Comparison of the lipase structure from the structural modeling (A)	
	and X-ray crystllography (B, C, D)	107

Figure	
3.27 Analysis of unreacted starting material of 3-phenoxy-1,2-	
propanediol catalyzed with lipase from B. stearothermophilus P1	
by Chiralcel OD-RH	109
3.28 Analysis of unreacted starting material of 3-phenoxy-1,2-	
propanediol catalyzed with lipase from B. stearothermophilus P1	
in acetone at room temperature (A) and 55°C (B) for 0.5, 1, 3 and	
6 h by Chiralcel OD-RH	110
3.29 Analysis of unreacted starting material of 3-phenoxy-1,2-	
propanediol catalyzed with lipase from B. stearothermophilus P1	
in dichloromethane at room temperature (A) and 55°C (B) for 0.5, 1,	
3 and 6 h by Chiralcel OD-RH	111
3.30 Analysis of unreacted starting material of 3-phenoxy-1,2-	
propanediol catalyzed with lipase from B. stearothermophilus P1	
in iso-octane at room temperature (A) and 55°C (B) for 0.5, 1, 3 and	
6 h by Chiralcel OD-RH	112
3.31 Analysis of unreacted starting material of 3-phenoxy-1,2-	
propanediol catalyzed with various lipases in dichloromethane by	
Chiralcel OD-RH	113

ABBREVIATIONS

BSA bovine serum albumin

CAPS 3-[cyclohexylamino]-1-propanesulfonic acid

CHAPS 3-([3-Cholamidopropyl]dimethylammonio)-1-propanesulfonate

dd.water distilled, deionized water

DDT dithiothreitol

E64 trans-epoxysuccinyl-L-lecylamido(4-guanidino)butane

EDTA ethylenediaminetetraacetic acid

kDa kilo Dalton

IPTG isopropyl-β-D-thiogalactopyranoside

LB Luria broth

p-NP ester *p*-nitrophenyl ester

PMSF phenylmethanesulphonyl fluoride

PVDF polyvinylidene difluoride

SDS sodium dodecyl sulphate