TABLE OF CONTENTS

		Page
ACKNOWLE	DOMENTS	***
	DGMEN 13	iii
ABSTRACT		iv
LIST OF TAE	BLE	xi
LIST OF ILL	USTRATIONS	xii
ABBREVIAT	IONS	xiv
Chapter 1	Introduction	
1.1 Ce	ramics in the North of Thailand	1
1.2 Ge	ographical facts concerning Lampang deposits of	1
rav	w materials for the ceramic industry.	
1.3 G e	ology of the Lampang clay deposits	5
1.4 Co	mposition of Lampang white clay and Lampang pottery stone.	6
1.5 Eva	aluation of the present application	7
1.6 Eva	aluation of the present situation	7
1.7 Co	nclusions regarding present limitations	8
Chapter 2	Experimental	
2.1 Sa	mpling of representative raw Lampang clay	9
2.2 Pre	eparation of raw Lampang clay	9
2.3 Ch	aracterization and evaluation of the dry ceramic clay-mineral.	
2.	3.1 Particle size distribution	9
2.	3.2 Chemical analysis	10
2.	3.3 Mineralogical composition	10
2.	3.4 Thermal analysis	
	2.3.4.1 Differential thermal analysis (DTA)	10
	2.3.4.2 Thermogravimetric analysis (TGA)	11
2.	3.5 Cation exchange capacity	11

	Page
2.3.6 Surface area	10
	12
2.3.7 Rheology of the clay slip	12
2.3.8 Property of the moist clay	
2.3.8.1 Plasticity) 13
2.3.8.2 Shrinkage	13
2.3.8.3 Modulus of rupture as a measure of str	ength 13
2.3.9 Properties of the fired clay	14
2.4 Methods to refine the raw material.	14
2.5 Uses of Lampang clay	
2.5.1 Application for porcelain pottery production.	15
2.5.2 Application of the remaining part of Lampang	clay 15
for production of floor tile is explored.	
Chapter 3 Results and Discussion	
3.1 Sample selection	16
3.2 Sample preparation	16
3.3 Characterization	
3.3.1 Grain size	17
3.3.2 Specific surface area	18
3.3.3 Chemical composition	19
3.3.4 Mineralogical composition	21
3.3.5 Exchange Capacity	23
3.3.6 Thermal Properties	24
3.3.7 Scanning electron microscope (SEM)	27
3.3.8 Behavior when heated to various temperature	s. 30
3.3.9 Properties of slip made from Lampang clay.	
3.3.9.1 Deflocculant demand	32
3 3 9 2 Viscosity	. 33

	Page
3.3.9.3 Thixotropy	34
3.3.10 Casting behavior	37
3.3.11 Plastic behavior of moist clay samples	39
3.3.12 Drying behavior	00
3.3.12.1 Dry shrinkage	40
3.3.12.2 Dry strength	41
3.3.13 Property of the Fired Clay	
3.3.13.1 Fired shrinkage	42
3.3.13.2 Strength of fired clay	44
3.3.13.3 Density after firing	45
3.3.13.4 Porosity after firing 3.3.13.5 Whiteness	46
	48
3.3.13.6 Scanning electron microscope (SEM)	49
3.4 Options for the improvement of the quality of the white clay	
from Lampang.	
3.4.1 Physical refinement; separation by particle size	
3.4.1.1 Wet vibration sieve screen	51
3.4.1.2 Wet tunnel sieve screen	52
3.4.1.3 Hydrocyclone	53
3.4.2 Chemical Treatment	55
3.4.3 Magnetic Treatment	56
3.4.4 Preliminary conclusions	58
3.5 Use of refined materials for the production of porcelain	
and other new types of ceramic products.	
3.5.1 Use of Lampang clay for the production of porcelain	58
3.5.1.1 Possible porcelain formulations	59
3.5.1.2 Properties of porcelain types	60
3.5.1.3 Conclusion	64

	x	
		Page
•	3.5.2 Application for floor tile	
	3.5.2.1 Possible floor tile formulations	64
	3.5.2.2 Properties of floor tile types	65
	3.5.2.3 Conclusion	66
:	3.5.3 Conclusion regarding the use of refined materials	66
Chapter 4	Conclusions	
4.1 (Characterization and valuation of the Lampang clay.	67
4.2 F	Possibilities for refining Lampang clay.	68
4.3 t	Jses of the refined Lampang clay.	69
REFEREN	CES ©	71
APPENDI	K1 White clay and pottery stone production of	76
	Lampang province, North region and all in Thailand	
	in 1991-1995 (Metric ton).	
APPENDIX	K II Some ceramic raw materials data	77
APPENDI)	K III Some data of porcelain	78
APPENDI)	X IV Some data of floor tile	79
APPENDIX	X V Veredlung durch Komklassierung am Beispiel eines Tons	80
	Aus Lampang/Thailand	
VITA		84

LIST OF TABLES

Table		Page
1.1	Chemical composition of white clay and pottery stone from Lampang ¹ .	6
3.1	Fractions of Lampang white clay with various particle sizes.	16
3.2	Specific surface area of Lampang white clay after sieving.	18
3.3	Chemical composition of Lampang white clay in percentage.	20
3.4	Mineral composition of Lampang white clay in percentage.	21
3.5	Adsorption of cations and exchange capacity of Lampang white clay.	23
3.6	Weight percent of various phases as a function of temperature in	30
	raw material and various fraction (< 63 microns, < 40 microns, < 10 microns	s).
3.7	Percentage of iron oxide form in samples of Lampang clay.	55
3.8	Chemical composition of treated Lampang clay sample M.	56
3.9	Mineral composition and whiteness of treated Lampang clay sample M.	57
3.10	Whiteness after firing of M sample showing differences of material before	57
	and after magnetic processing. Different test pieces have been fired to	
	different temperatures.	
3.11	Possible porcelain formulas.	59
3.12	Mineral composition of both possible porcelain formulas.	59
3.13	Chemical composition of both possible porcelain formulas.	59
3.14	Body forming from slurry by cast shaping.	60
3.15	Shrinkage of both possible porcelain formulas.	60
3.16	Bending strength of both possible porcelain formulas.	61
3.17	Whiteness after firing of both possible porcelain formulas.	61
3.18	Density, Water absorption and phase composition after firing of two	62
	possibility porcelain formulas, reduction atmosphere, industrial kiln	
3.19	Some floor tile formulations.	64
3.20	% Water absorption after firing	65
3.21	% Open porosity after firing	65
3.22	Bulk density after firing (g/cm ³)	65
3 23	Rending strength after firing (N/mm²)	66

LIST OF ILLUSTRATIONS

Figure		Page
1.1	White clay and pottery stone deposits in Lampang province.	3
1.2	Map ratio 1:50,000 explain the location of white clay and pottery stone	4
	of the Thai Kaolin's mine and Mrs.Sareerat's mine.	
3.1	Particle size distribution of Lampang white clay.	17
3.2	Specific surface area for each of three samples of Lampang white clay.	19
3.3	Chemical composition of Lampang clay.	20
3.4	Mineral composition of Lampang clay samples.	22
3.5	Cation exchange capacity of Lampang clay.	23
3.6	Differential thermo analytical behavior of Lampang clay	24
3.7	Differential thermal gravimetry of Lampang white clay	25
3.8	Thermal expansion of Lampang white clay	26
3.9	Picture of raw Lampang clay at room temperature, 3000x magnification	27
3.10	Picture of Lampang clay sample with all particles < 63 microns	28
	room temperature at 3000x magnification.	
3.11	Picture of the Lampang clay sample consists of particles < 40 microns	28
	at room temperature, 3000x magnification.	
3.12	Picture of the Lampang clay sample with all particles < 10 microns	29
	at room temperature, 3000x magnification.	
3.13	Deflocculant demand of Lampang white clay after size grading.	32
3.14	Viscosity curve of Lampang clay.	33
3.15	Flow curve of Lampang clay < 63 microns.	35
3.16	Flow curve of Lampang clay < 40 microns.	35
3.17	Flow curve of Lampang clay < 10 microns.	36
3.18	Casting rate of Lampang clay.	38
3.19	Stress and maximum deformation of most Lampang clay as a function of	39
	water content.	
3.20	Dry shrinkage of Lampang clay for each of three samples.	40

Figure		Page
3.21	Dry bending strength of Lampang clay for each of three samples.	41
3.22	Fired shrinkage of Lampang clay after sieving and firing.	43
3.23	Bending strength of Lampang clay after sieving and firing.	44
3.24	Bulk density and true density of Lampang clay.	45
3.25	Porosity of Lampang clay after firing.	47
3.26	Whiteness of Lampang clay after firing.	48
3.27	Scanning electron microscope of Lampang clay sample C	49
	(particles < 63 microns) fired to 1350°C at 3000x magnification.	
3.28	Scanning electron microscope of Lampang clay sample M	50
	(particles < 40 microns) after firing to 1350 °C at 3000x magnification.	
3.29	Scanning electron microscope of Lampang clay sample F	50
	(particles < 10 microns) after firing to 1350°C at 3000x magnification.	
3.30	Scheme of wet vibration sieve screen.	52
3.31	Scheme of wet tunnel sieve screen.	52
3.32	Scheme diagram of the technological process for Kaolin mine in Germany.	53
3.33	Scheme diagram of Kaolin classification by means of hydrocyclones.	54
3.34	Scanning electron microscope of sample P-1 after firing to 1370°C in	62
	a reducing atmosphere.	
3.35	Scanning electron microscope of sample P-2 after firing to 1370°C in	63
	a reducing atmosphere.	
3.36	Sample crucibles of both porcelain compositions (fired to 1370°C in	63
	a reducing atmosphere) are shown. The crucible on the left is P-1	
	and the one on the right is P-2.	

ABBREVIATIONS

⁰C Degree Selcius

µm Micrometer or microns

L.O.I. Loss on Ignition

OF Oxidation Firing

RF Reduction Firing

mm. Millimeter

cm. Centimeter

m. Meter

m². Square Meter

km. Kilometer

U Unfractioned Lampang clay

C Course sieved with all particles smaller than 63 microns

M Medium sieved with all particles smaller than 40 microns

F Finest fraction with all particles smaller than 10 microns

m²/g Square meter per gram

meq./100g Milli-equivalent per 100 gram

uV Micro volt

Sec. Second

M Pa Meka Pascal

N/mm² Newton per square millimeter

g/cc gram per cubic centimeter

T Tesla (Magnetic field)