CONTENTS

	Page
Approval page	ii
Acknowledgements	, iii
Abstract	iv
List of tables	viii
List of illustrations	x
Abbreviations and symbols	xii
CHAPTER 1 INTRODUCTION	
1.1 Arsenic-As	1
1.1.1 General	1
1.1.2 Arsenic pollution	1
1.1.3 Toxic effects of arsenic in humans	. 3
1.1.4 Arsenic determination	6
1.2 Neutron Activation Analysis	8
1.2.1 NAA Method	9
1.2.2 Neutron sources	10
1.2.3 Activation with neutron	11
1.2.4 Measurement of gmma ray	17
1.2.5 Quantitative determination of activity	18
1.2.6 Instrumental and radiochemical	20
1.2.7 Sensitivity for determination of elements by NAA	21
1.3 Aim of the research	21
CHAPTER 2 EXPERIMENTAL	
2.1 Apparatus and Material	22
2.1.1 NAA apparatus	22
2.1.2 Chemical and material	22
2.2 Sample material	26
2.3 NA experiment	26
2.3.1 Standard and soil preparation	26

2.3.2 Preliminary study	26
2.3.2.1 Qualitative analysis	26
2.3.2.2 Quantitative analysis	27
2.3.3 Optimization conditions	27
2.3.4 Analysis validation method and flux correction	28
2.4 Analysis of soil samples	28
2.5 γ-spectrum evaluation and calculation of results	29
CHAPTER 3 RESULTS	30
3.1 Preliminary soil analysis	32
3.1.1 Qualitative analysis	32
3.2 Quantitative analysis	36
3.2.1 Preliminary study to quantitative analysis	36
3.2.2 Optimization condition	38
3.2.3 Analysis validation method and flux correction	50
3.2.3.1 Flux correction	50
3.2.3.2 Validation method	54
3.3 Analysis of soil samples	55
CHAPTER 4 CONCLUSIONS	57
CHAPTER 5 REFERENCES	59
APPENDIX A	62
APPENDIX B	66
VITA	70

LIST OF TABLES

Tal	ble	Page
1.1	Physical and Chemical information of arsenic	2
1.2	Arsenic toxic in different organ systems: systemic effects	5
1.3	Classification of the methods for arsenic determination	6
1.4	Examples of some techniques for arsenic determination	<i>7</i>
1.5	Capture cross section (σ_{γ}) and resonance integral (l_{γ}) (in barns) for	
	some typical activation targets	14
1.6	Half-life values for typical activation product	15
1.7	Estimated detection limits for INAA using decay gamma rays.	21
	Assuming irradiation in a reactor neutron flux of 1x10 ¹³ n cm ⁻² s ⁻¹	
2.1	Irradiated and cooling times in this work for determination of arsenic	28
3.1	Determination limits for arsenic element:a comparison of NAA	
	(assuming a thermal neutron flux of 10^{18} n m ⁻² s ⁻¹) with	
	other analytical techniques	30
3.2	Nuclear data of ⁷⁶ As radionuclide	31
3.3	3.3 Radioisotopes induced from thermal neutron activation of natural elements	
	present in soil samples	33
3.4	Determination of arsenic concentrations in five samples from	
	different locations where $\lambda = 4.389E-4 \text{ min}^{-1}$.	36
3,5	Count rates and arsenic concentrations in SRM and sample soil No 5	
	obtained from various irradiation (Ti) and cooling (Td) times	39
3.6	Arsenic average concentration in samples soil No 5 obtained with	
	various irradiated and cooling time	42
i .	Photopeak to Compton scattering ratio of soil samples No 5 obtained	
	with various irradiated and cooling times	44
3.8	Counts and specific counts in a copper monitor	50
	Relative count values by sample position flux correction and	
	relative flux ratio of As/Cu; counts of Cu ratios and normalized with	
	sample and standard position in the rabbit	51

3.10	The calculation and results of arsenic concentration in six candidate's	
	SRM from different vial position in the rabbit	54
3.11	Arsenic concentrations in 5 candidate's sample by TNAA and	
	ENAA compared with XRF E-T method	56
4.1	Arsenic concentrations in five candidate's sample by TNAA and ENAA	58
B1.1	Some type of detector	70
B2. 1	The weights of soil sample, starch binder and As ₂ O ₃ in pellets	76
B2.2	Measuring time in this experiment.	76
B3.1	Result from XRFA calculation of difference soil samples	78

LIST OF ILLUSTRATIONS

Fig	gure	Page
1.1	Health effect from breathing inorganic arsenic	4
1.2	Health effect from ingesting inorganic arsenic	5
1.3	The process of neutron capture by a target nucleus followed	
	by the emission of gamma rays	8 9
1.4	A typical reactor neutron energy spectrum showing	
	the various components used to describe the neutron energy regions	10
1.5	Activation curve	17
2.1	The renewed Triga Mark III nuclear research reactor (TRR-1/M1),	
	operated by the Office of Atomic Energy for Peace (OAEP)	23
2.2	γ Spectroscopy system manufactured by Oxford Instrument Inc.,	
	Nuclear Measurement Group, U.S.A.	24
2.3	Apparatus and material in this study	25
2.4	Scheme of Qualitative analysis of soil samples. (Nepi = epithermal neutron,	,
	Nth = thermal neutron, Ti = irradiated time, Td = cooling time	26
2.5	The position of sample vials in rabbit (s is sample vial,	
	SRM is standard vial and = copper wire)	29
3.1	γ-spectra of radioisotopes induced from thermal neutron activation of nati	ural
	elements present in soil samples for short-, intermediate-, and long time	
	irradiation applied in both A4 and Ca3 core tubes	34
3.2	γ-spectra of radioisotopes induced from thermal neutron activation of elen	nents
	present in SRM 2710 (Motana soil) for short-, intermediate-, and long time	
	irradiation applied in A4 core tube	37
3.3	Arsenic concentration in soil samples No 5 obtained with various irradiated,	
	cooling time and position vials in the rabbit	43
3.4	γ spectrum of soil No 1 by suitable condition of ENAA	49
3.5	γ spectrum of soil No 1 by suitable condition of TNAA	49
3.6	Neutron flux variation along an irradiation rabbit demonstrated	
	by the specific count in a copper monitor	51

3.7 Neutron flux variation along an irradiation tube, demonstrated	
by the activity induced in a cobalt mornitor	53
3.8 The flux corrections by in both normalized with specific count of As /	
specific count of Cu ratio and normalized with sample	
and standard position in rabbit	53
3.9 Flux correction of SRM 2710 by sample position flux correction method	55
B.1.1 The production of characteristic X-ray	66
B.1.2 The selection rule	67
B.1.3 Decay scheme of the principle transition in ²³⁸ Pu	68
B.1.4 X-ray spectrum from ²³⁸ Pu source measured with Si(Li) detector	68
B.1.5 X-ray composition	69
B.1.6 Principle of Emission-Transmission (E-T) method	72
B. 2.1 XRF apparatus system	74
B.2.2 Block diagram of detector system	74
B.3.1 X-ray fluorescence spectrum of soil sample No.1	77

ABBREVIATIONS AND SYMBOLS

AAS atomic absorption spectrometry

AFS atomic fluorescence spectrometry

DGNAA delayed gamma-ray neutron activation analysis

EDXRF energy dispersive X-ray fluorescence

ENAA epithermal neutron activation analysis

E-T emission transmission GFAAS

FWHM fullwidth at half maximum

FNAA fast gamma-ray neutron activation analysis

HG hydride-generation

HGAAS hydride-generation atomic absorption spectrometry

HPGe hyperpure (or intrinsic) germanium detector

HPLC high performance liquid chromatography

ICP-MS inductively coupled plasma-mass spectrometry

ICP-AES inductively coupled plasma- atomic emission spectrometry

INAA instrumental neutron activation analysis

LOD limit of detection

MCA multi-channel analyzer

NIST the Nation Institute of Standard and Technology

NAA neutron activation analysis

PGNAA prompt gamma-ray neutron activation analysis

SRM standard reference material

TNAA thermal neutron activation analysis

RSD relative standard deviation

XRF X-ray fluorescence

A atomic weight

 A_o activity at the end of the irradiation time

 $A_{\rm s}$ the saturation activity

 A_{sam} activity of sample

 A_{bare} activity in bare tube

 $A_{\rm epi}$ activity under 1 mm of cadmium

 $A_{\rm std}$ activity of standard

 C_{sam} concentration of element in sample

 $C_{\rm std}$ concentration of element in standard

Ci Curi

N number of nuclei

 N_A Avogadro's number

 (n,γ) (neutron, gamma) reaction

(n,p) (neutron, proton) reaction

(n,α) (neutron, alpha) reaction

nd not detected

ppm part per million

ppb part per brillion

P branching ratio

sam sample std standard

t_c counting time

t_d decay time

 $t_{\rm m}$ measuring time

T,t irradiation time

W_{sam} weight of sample

 $W_{\rm std}$ weight of standard

W mass of element

ε molar absorptivity

φ neutron flux

φ_{th} thermal neutron flux

ф_{ері} epithermal neutron flux

θ isotropic abundance

σ cross section

 σ_{th} thermal cross section

 σ_{γ} capture cross section

λ	decay constant
l_{γ}	capture resonance integral
For appendix B	
χ	total mass absorption coefficient
$\mu_{\mathbf{i}}$	individual mass absorption coefficients
$w_{\mathbf{i}}$	weight fraction of interest element i,
n	number of components.
ϕ_1	angle between excitation radiation from source and sample.
ϕ_2	angle between characteristic X-ray of element i in sample
	and detector
E _o	incident radiation energy.
E ₁	energy of characteristic X-ray of element i.
I_I	characteristic X-ray of element i from sample
$I_i^{\ t}$	characteristic X -ray of element i from target.
I_i^{s+}	characteristic X -ray of element i from sample and target
χ,	mass absorption coefficient of X -ray measurement of element i
$ ho_m D$	thickness of sample
F_i	absorption correction factor
S_i	sensitivity of element i