## TABLE OF CONTENTS

|                                         | Page |
|-----------------------------------------|------|
| ACKNOWLEDGEMENT                         | iii  |
| ABSTRACT (ENGLISH)                      | iv   |
| ABSTRACT (THAI)                         | v    |
| LIST OF TABLES                          | viii |
| LIST OF ILLUSTRATIONS                   | x    |
| ABBREVIATIONS AND SYMBOLS               | xii  |
| CHAPTER 1 INTRODUCTION                  | 1    |
| 1.1 Lead                                | 1    |
| 1.1.1 Properties of lead                | 2    |
| 1.1.2 Toxicity of lead                  | 3    |
| 1.2 Voltammetry                         | 6    |
| 1.2.1 Working electrodes                | 8    |
| 1.3 Adsorptive stripping voltammetry    | 10   |
| 1.3.1 Principles—operational parameters | 11   |
| 1.3.2 Applications                      | 15   |
| 1.4 Pulse voltammetry                   | 16   |
| 1.5 Chemically Modified Electrode       | 19   |
| 1.6 Bioaccumulation                     | 22   |
| 1.7 Pennisetum setosum                  | 24   |
| 1.8 Research Aims                       | 25   |
| CHAPTER 2 EXPERIMENTAL                  | 26   |
| 2.1 Apparatus and Instruments           | 26   |
| 2.2 Chemicals                           | 26   |
| 2.3 Preparation of Solutions            | 28   |
| 2.4 Preparation of treated – Pennisetum | 29   |

|            |      |                    |                                                       | Page |
|------------|------|--------------------|-------------------------------------------------------|------|
|            | 2.5  | Electro            | ode preparation                                       | 29   |
|            | 2.6  | Optimi             | zation of system                                      | 30   |
|            | 2.7  | Analyt             | ical characteristic of the method                     | 35   |
| CHAPTER 3  | RES  | ULTS               |                                                       | 36   |
|            | 3.1  | Prelimi            | nary Studies of Bioaccumulation of treated Pennisetum | 36   |
|            | 3.2  | Optimi             | zation of the System                                  | 41   |
|            |      | 3.2.1              | Effect of pH                                          | 41   |
|            |      | 3.2.2              | Effect of accumulation time                           | 43   |
|            |      | 3.3.3              | Effect of ionic strength                              | 45   |
|            |      | 3.3.4              | Effect of paste composition                           | 46   |
|            |      | 3.3.5              | Effect of modulation amplitude                        | 48   |
|            |      | 3.3.6              | Effect of scan rate                                   | 49   |
|            | 3.3  | Analyt             | ical characteristics of the method                    | 51   |
|            |      | 3.3.1              | Linear Range                                          | 51   |
|            |      | 3.3.2              | Detection limit                                       | 53   |
|            |      | 3.3.3              | Calibration Curve                                     | 54   |
|            |      | 3.3.4              | Reproducibility of the system                         | 56   |
|            |      | 3.3.5              | Repeatability of the system                           | 57   |
|            |      | 3.3.6 <sub>C</sub> | Effect of Interference                                | 57   |
|            | 3.4  | Deterr             | nination of Lead in Mineral Water Samples             | 59   |
| CHAPTER 4  | DIS  | CUSSIC             | ON AND CONCLUSION                                     | ·60  |
| REFERNCES  |      |                    |                                                       | 65   |
| APPENDIXES | S    |                    | ·                                                     | 72   |
| CURRICULU  | M VI | TAE                |                                                       | 79   |

## LIST OF TABLES

| <b>Table</b> |                                                                          | Page |
|--------------|--------------------------------------------------------------------------|------|
| 1.1          | Physical properties of lead                                              | 2    |
| 1.2          | Symptoms of inorganic and organic lead poisoning                         | 4    |
| 1.3          | Adsorptive stripping measurements of organic compounds                   | 15   |
| 1.4          | Adsorptive stripping of metal ions via the adsorption of metal complexes | 16   |
| 3.1          | Apparent lead binding capacity for treated - Pennisetum                  | 36   |
| 3.2          | Effect of varying pH on voltammetric response of treated-Pennisetum      | 41   |
|              | modified (15% w/w) carbon paste electrode                                |      |
| 3.3          | Effect of accumulation times on voltammetric response of treated-        | 43   |
|              | Pennisetum modified (15% w/w) carbon paste electrode                     |      |
| 3.4          | Effect of ionic strength on voltammetric response of treated-Pennisetum  | 45   |
|              | modified (15% w/w) carbon paste electrode                                |      |
| 3.5          | Effect of paste composition on voltammetric response                     | 47   |
| 3.6          | Effect of modulation amplitude on voltammetric response of treated-      | 48   |
|              | Pennisetum modified (10 % w/w) carbon paste electrode                    |      |
| 3.7          | Effect of scan rate on voltammetric response of treated-Pennisetum       | 50   |
|              | modified (10 % w/w) carbon paste electrode                               |      |
| 3.8          | Optimum condition for lead(II) determination                             | 52   |
| 3.9          | Study of linear range                                                    | 52   |
| 3.10         | Peak currents obtained from low concentrations of lead(II) determination | 54   |
| 3.11         | Calibration curve obtained from untreated and treated-Pennisetum         |      |
|              | modified carbon paste electrodes                                         | 55   |
| 3.12         | Reproducibility of replicate determination of lead(II)                   | 56   |
| 3.13         | Repeatability of replicate determination of lead(II)                     | 57   |
| 3.14         | Effect of possible interferences                                         | 58   |

| Table |                                                                        | Page |
|-------|------------------------------------------------------------------------|------|
| 3.15  | Comparison the data obtained between the proposed voltammetric method  |      |
|       | and atomic absorption spectrophotometry (AAS) for determination of non |      |
|       | spike Pb(II) and spike 0.05 ppm Pb(II) in mineral water samples        | 59   |
|       |                                                                        |      |

## LIST OF ILLUSTRATIONS

| Figure |                                                                                | Page |
|--------|--------------------------------------------------------------------------------|------|
| 1.1    | Schematic experimental arrangement for controlled potential experiments; Wk    |      |
|        | is the working electrode, Ctr is the counter electrode, Ref is the reference   |      |
|        | electrode                                                                      | 7    |
| 1.2    | Normal pulse polarography, (a) sampling scheme, (b) current sampled            | 17   |
| 1.3    | NPP, I <sub>F</sub> and I <sub>C</sub> vs. pulse-time course                   | 18   |
| 1.4    | Sampling scheme of differential double-pulse voltammetry                       | 19   |
| 2.1    | Electrochemical analyzer set (A) PGSTAT 10 (B) Methrom stand for               |      |
|        | voltammetric                                                                   | 27   |
| 2.2    | Three electrode system used for analysis (A) Carbon paste electrode as         |      |
|        | working electrode (B) saturated calomel electrode as reference electrode (C)   |      |
|        | Platinum wire electrode as auxiliary electrode                                 | 27   |
| 3.1    | Cyclic voltammogram for 100 mg/l. lead(II) following 3, 6 and 9 min stirring   |      |
|        | at the treated-Pennisetum modified carbon paste electrode respectively; Scan   |      |
|        | rate, 10 mV/sec. Supporting electrolyte, acetate buffer pH 5.0 : A= Carbon     |      |
|        | paste electrode; B = treated-Pennisetum modified carbon paste electrode        | 37   |
| 3.2    | Scanning electron micrographs of the unmodified carbon paste electrode (A)     |      |
|        | and treated-Pennisetum modified carbon paste electrode (B)                     | 39   |
| 3.3    | Voltammetric responses before (A) and after (B) electrode regeneration in the  |      |
|        | determination of lead(II) by differential pulse voltammetry. Support           |      |
|        | electrolyte, 0.6 M acetate buffer; scan rate, 5 mV/s; modulation amplitude, 40 |      |
|        | mV                                                                             | 40   |
| 3.4    | Effect of varying the pH of acetate buffer for the detection of lead(II) at    |      |
|        | treated-Pennisetum modified carbon paste electrode following accumulation      |      |
|        | of 1 ppm aqueous solution of lead(II) for 2 min. Detection conditions:         |      |
|        | electrolyte, 0.6 M acetate buffer: scan rate, 5 mV/s; pulse amplitude, 40 mV   | 42   |

| Figure | e .                                                                             | Page |
|--------|---------------------------------------------------------------------------------|------|
| 3.5    | Effect of varying the accumulation time on voltammetric response. Lead          |      |
|        | (II) concentration, (A) 1.00 ppm, (B) 0.10 ppm, (C) 0.05 ppm; electrolyte,      |      |
|        | acetate buffer pH 5.0; scan rate, 5 mV/s; pulse amplitude, 40 mV                | 44   |
| 3.6    | Effect of ionic strength on the peak current. Supporting electrolyte, acetate   |      |
|        | buffer pH 5.0; lead(II) concentration, 0.05 ppm; preconcentration time, 5       |      |
|        | min; scan rate, 5 mV/s; pulse amplitude, 40 mV                                  | 46   |
| 3.7    | Effect of paste composition on the peak current. Supporting electrolyte,        |      |
|        | acetate buffer pH 5.0; ionic strength, 0.6; lead(II) concentration, 0.05 ppm;   |      |
|        | preconcentration time, 5 min; scan rate, 5 mV/s; pulse amplitude, 40 mV         | 47   |
| 3.8    | Effect of modulation amplitude on the response of treated-Pennisetum            |      |
|        | modified (10% w/w) carbon paste electrode. Supporting electrolyte, acetate      |      |
|        | buffer pH 5.0; ionic strength, 0.6; lead(II) concentration, 0.05 ppm;           |      |
|        | preconcentration time, 5 min; scan rate, 5 mV/s                                 | 49   |
| 3.9    | Effect of scan rate on the response of treated-Pennisetum modified (10%         |      |
|        | w/w) carbon paste electrode. Supporting electrolyte, acetate buffer pH 5.0;     |      |
|        | ionic strength, 0.6; lead(II) concentration, 0.05 ppm; preconcentration time,   |      |
|        | 5 min; moduration amplitude 120 mV                                              | 50   |
| 3.10   | Differential pulse voltammograms for 0.05 ppm lead(II) following different      |      |
|        | scan rates. Supporting electrolyte, acetate buffer pH 5.0; ionic strength, 0.6; |      |
|        | preconcentration time, 5 min; moduration amplitude, 120 mV                      | 51   |
| 3.11   | Relationship between peak current (µA) and lead(II) concentration (ppm)         | 53   |
| 3.12   | The calibration curves of lead(II) determination, using treated-Pennisetum      |      |
|        | modified carbon paste electrode (A) and untreated-Pennisetum modified           |      |
|        | carbon paste electrode (B)                                                      | 55   |
|        |                                                                                 |      |

## ABBREVIATIONS AND SYMBOLS

AAS atomic absorption spectrophotometry

ASV anodic stripping voltammetry

CV cyclic voltammetry

°C degree Celsius

DPASV differential pulse anodic stripping voltammetry

E<sub>1/2</sub> half wave potential

g gram i current

i<sub>d</sub> diffusion current

M molar

mg milligram
ml milliliter
mV millivolt
min minute

ppm part per million

RSD relative standard deviation

μA microampere

sec second VS versus

SD standard deviation

w/w weight by weight