TABLE OF CONTENTS

			Page
ACKNOWLEDGMENTS	······································	· 🔑 🤇	iii
ABSTRACT			iv
LIST OF TABLES			ix
LIST OF FIGURES			x
STATEMENT AND SIGNIFIC	CANCE)	1
LITURATURE REVIEW		·····	4
RESEARCH DESIGNS	°	• • • • • • • • • • • • • • • • • • • •	32
METHODS	<u> </u>	*******************	34
RESULTS		• • • • • • • • • • • • • • • • • • • •	55
DISCUSSION		***************************************	79
REFERENCE		••••••	88
APPENDIX	Ŗ ^r	************************	104
VITA		4.	120

LIST OF TABLES

Table	Page

1	Alteration of physiologic parameters in aging
2	Comparison of age and general data between exercise training group (gr.A)
	and exercise training plus vitamin E supplement group (gr.B) at the begining
	(week 0) of the experiment
3	Score of estimate dietary intake in exercise training group (gr.A) and
	exercise training plus vitamin E supplement group (gr.B) at the beginning
	(week 0) of the experiment58
4	Effect of exercise training on physical fitness in exercise training group
	(gr.A) and exercise training plus vitamin E supplement group (gr.B) 48
	hours after exercise at various time of the experiment61
5	Effect of exercise training on total antioxidant capacity (TAC),
	malondialdehyde (MDA), vitamin E and blood lipid profile level in
	exercise training group (gr.A) and exercise training plus vitamin E
	supplement group (gr.B) 48 hours after exercise at various time of the
	experiment69

LIST OF FIGURES

Figu	ure	Page
1	Free radical and damages of membrane.	13
2	Role of lipoproteins in atherosclerosis	14
3	Vitamin E structures	18
4	Pathways for the absorption and preferential delivery of vitamin E	to
	peripheral tissues	19
5	Summary overall aspects of lipoprotein metabolism and transport.	23
6	Summary of aspects of lipoprotein metabolism and transport	26
7	Exercise and generation of adenosine	30
8	Measurement of skinfold by using Lange skinfold caliper	37
9	Chart for prediction of maximum oxygen uptake from the heart rate	te response
	to submaximal worklodes	41
10	Comparison of serum vitamin E level between exercise training g	roup (gr.A)
	and exercise training plus vitamin E supplement group (gr.B) 48	hours after
	exercise at various time of the experiment	59
11	Comparison of systolic blood pressure between exercise train	ning group
	(gr.A) and exercise training plus vitamin E supplement group (gr.I	3) 48 hours
	after exercise at various time of the experiment	63

12	Comparison of mean arterial pressure between exercise training group (gr.A)
	and exercise training plus vitamin E supplement group (gr.B) 48 hours after
	exercise at various time of the experiment
13	Comparison of maximum oxygen consumption between exercise training
	group (gr.A) and exercise training plus vitamin E supplement group (gr.B)
	48 hours after exercise at various time of the experiment
14	Comparison of persent body fat between exercise training group (gr.A) and
	exercise training plus vitamin E supplement group (gr.B) 48 hours after
	exercise at various time of the experiment67
15	Comparison of lean body mass between exercise training group (gr.A) and
	exercise training plus vitamin E supplement group (gr.B) 48 hours after
	exercise at various time of the experiment
16	Comparison of serum cholesterol between exercise training group (gr.A) and
	exercise training plus vitamin E supplement group (gr.B) 48 hours after
	exercise at various time of the experiment71
17	Comparison of serum LDL-C between exercise training group (gr.A) and
	exercise training plus vitamin E supplement group (gr.B) 48 hours after
	exercise at various time of the experiment72
18	Comparison of the HDL-C/LDL-C ratio between exercise training group
	(gr.A) and exercise training plus vitamin E supplement group (gr.B) 48 hours
	after exercise at various time of the experiment

19	Comparison of the TC/HDL-Cratio between exercise training group (gr.A)
	and exercise training plus vitamin E supplement group (gr.B) 48 hours after
	exercise at various time of the experiment76
20	Comparison of serum total antioxidant capacity between exercise training
	group (gr.A) and exercise training plus vitamin E supplement group (gr.B)
	48 hours after exercise in various time of the experiment
21	Comparison of serum malondialdehyde between exercise training group
	(gr.A) and exercise training plus vitamin E supplement group (gr.B) 48 hours
	after exercise in various time of the experiment

ABBREVIATIONS

%BF

percent body fat

 μ l

microliter

µmol/L

micromole per liter

 ^{0}C

degree Celcius

4-AAP

4-amino antipyrine

ABTS

2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid)

ANOVA

analysis of variance

ATP

adenosine-5-phosphate

B.U.N

blood urea nitrogen

BD

body density

BF

body fat

bpm

beat per minute

BW

body weight

CAT

catalase

Ca++

calcium ion

Cl

chlorine

cm

centimeter

СО

cardiac output

 CO_2

carbondioxide

DAP

dihydroxyacetone phosphate

EKG

electrocardiogram

EST exercise stress test

et al and colleagues

FBS fasting blood sugar

Fe²⁺ ferrous ion

Fe³⁺ ferric ion

g gram

g/dl gram per deciliter

GK glycerol kiness

GPO glycerolphosphate oxidase

GPX glutathione peroxidase

GSH glutathione

GSSG glutathione disulfide

H[†] hydrogen ion

H₂O₂ hydrogen peroxide

HDL high density lipoprotein

HR heart rate

HRmax maximum heart rate

HRR heart rate reserve

IU international unit

K[†] potassium ion

kpm kilopoundmeter

kpm/min kilopound meter per minute

L lipid radicals

LBM lean body mass

LDL low density lipoprotein

LH lipid reduced form

LO lipid peroxyl radical

LOOH lipid hydroperoxide

MDA malondialdehyde

mEq milliequivalent

Met Mb metmyoglobin

mg milligram

mg/dl milligram per deciliter

ml milliliter

mM millimole

mmol/L millimole per liter

mV millivoltage

Na sodium ion

nm nanometer

NSS normal saline solution

O₂ superoxide anion or superoxide radical

O.D. optical density

O₂ oxygen molecule

OH hydroxide ion

OH hydroxyl radical

oxLDL oxidized low density lipoprotein

PBS phosphate buffer saline

RDA recommended dietary allowances

ROS reactive oxygen species

rpm round per minute

SEM standard error of means

SOD superoxide dismutase

TAC total antioxidant capacity

TCA trichloroacetic acid

TBA thiobabituric acid

TBHB 3-hydroxy-2,4,6-tribromobenzonic acid

TEP tetraethoxypropane

VLDL very low density lipoprotein

VO₂max maximum oxygen consumption

WBC white blood cells

wk week