CHAPTER II PRELIMINARIES

In this chapter, we give some definitions, notations and theorems which will be used in the later chapters.

2.1 Topological Spaces

Definition 2.1.1 Let X be a set. A topology (or topology structure) in X is a family \Im of subsets of X satisfies:

- (a) Each Union of members of 3 is also a member of 3.
- (b) Each finite intersection of members of 3 is also a member of 3.
- (c) \emptyset and X are members of \Im .

Each members of \Im is called open. A subset A of X is closed in X if X-A is open.

Theorem 2.1.2 If \mathcal{F} is the family of closed sets in a topological space X, then

- (a) Each intersection of members of \mathcal{F} belongs to \mathcal{F} .
- (b) Each finite union of members of \mathcal{F} belongs to \mathcal{F} .
- (c) \emptyset and X both belong to \mathcal{F} .

Proof. See [10] page 24.

Definition 2.1.3 A couple (X,\Im) consisting of a set X and a topology \Im in X is called a topological space. Note that in the set $X \neq \emptyset$, let $\Im = P(X)$. Then (X,\Im) is a topological space and it is called **the discrete topological space**.

Definition 2.1.4 Let X be a topological space and $A \subseteq X$. The closure of A in X denoted by Cl(A), is the set

$$Cl(A) = \cap \{F \subseteq X : F \text{ is closed and } A \subseteq F\}.$$

Theorem 2.1.5 Let X be a topological space and A, $B \subseteq X$, then

- (a) $A \subseteq Cl(A)$
- (b) If $A \subseteq B$, then $Cl(A) \subseteq Cl(B)$
- (c) A is closed in X if and only if A = Cl(A)
- (d) Cl(A) is the smallest closed set in X with $A \subseteq Cl(A)$

- (e) Cl(Cl(A)) = Cl(A)
- (f) $Cl(A \cup B) = Cl(A) \cup Cl(B)$
- (g) $Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$.

Proof. See [4] page 69-70.

Theorem 2.1.6 Let $\{B_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of subsets of a topological space X. Then $\bigcup_{\alpha \in \mathcal{A}} Cl(B_{\alpha}) \subseteq Cl(\bigcup_{\alpha \in \mathcal{A}} B_{\alpha})$. **Proof.** See [4] page 70.

Definition 2.1.7 Let X be a topological space and $A \subseteq X$. The interior of A in X denoted by Int(A), is the set

$$Int(A) = \bigcup \{G \subseteq X : G \text{ is open and } G \subseteq A\}.$$

Theorem 2.1.8 Let X be a topological space and A, $B \subseteq X$, then

- (a) $Int(A) \subseteq A$
- (b) If $A \subseteq B$, then $Int(A) \subseteq Int(B)$
- (c) A is open if and only if Int(A) = A
- (d) Int(A) is the largest open in X with $Int(A) \subseteq A$
- (e) Int(Int(A)) = Int(A)
- (f) $Int(A) \cup Int(B) \subseteq Int(A \cup B)$
- (g) $Int(A) \cap Int(B) = Int(A \cap B)$
- (h) If $A_{\alpha} \subseteq X$ for all $\alpha \in \mathcal{A}$, then $\bigcup_{\alpha \in \mathcal{A}} Int(A_{\alpha}) \subseteq Int (\bigcup_{\alpha \in \mathcal{A}} A_{\alpha})$.

Proof. See [10] page 27.

Theorem 2.1.9 Let A be a subset of a topological space X, then Int(A) = X - Cl(X - A).

Proof. See [4] page 71.

Definition 2.1.10 Let (X,\Im) be a topological space and $Y \subseteq X$. The collection $\Im_Y = \{G \cap Y : G \in \Im\}$ is a topology for Y, called **the relative topology for Y**. The fact that a subset of X is being given this topology is signified by referring to it as a subspace of X.

2.2 Generalized closed and Regular generalized closed sets

Definition 2.2.1 Let A be a subset of a topological space X. Then A is said to be a **regular open** if A = Int(Cl(A)), and A is said to be a **regular closed** if A = Cl(Int(A)).

Definition 2.2.2 Let A be a subset of a topological space X. Then A is said to be **generalized closed** (briefly g - closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X. The complement of a g-closed set is said to be **generalized** open (briefly g - open).

Theorem 2.2.3 Let X be a topological space. A subset A of X is g-open if and only if $F \subseteq Int(A)$ whenever $F \subseteq A$ and F is closed in X. **Proof.** See [2] page 195.

Definition 2.2.4 Let A be a subset of a topological space X. Then A is said to be **regular generalized closed** (briefly rg - closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X. The complement of a rg-closed set is said to be **regular generalized open** (briefly rg - open).

Theorem 2.2.5 Let X be a topological space. A subset A of X is rg-open if and only if $F \subseteq Int(A)$ whenever $F \subseteq A$ and F is regular closed in X. **Proof.** See [7] page 215.

Note that we obtain the following diagram from their definitions.

DIAGRAM I

regular closed \Rightarrow closed \Rightarrow g-closed \Rightarrow rg-closed regular open \Rightarrow open \Rightarrow g-open \Rightarrow rg-open

Theorem 2.2.6 Let (X, \Im) be a topological space and (Y, \Im_Y) a subspace of (X, \Im) . Then $A \subseteq Y$ is a closed set in Y if and only if $A = Y \cap F$, for some closed set F in X.

Proof. See [4] page 77.

Theorem 2.2.7 Let Y be a subspace of X. If $A \subseteq Y$ is closed (open) in Y and Y is closed (open) in X, then A is closed (open) in X. **Proof.** See [4] page 78.

Theorem 2.2.8 Let Y be a subspace of X. If $A \subseteq Y$ is regular closed in Y and Y is regular closed in X, then A is regular closed in X. **Proof.** See [9] page 31.

Definition 2.2.9 A function $f: X \to Y$ is said to be **open** if for each open set U in X, f(U) is open in Y.

Definition 2.2.10 A function $f: X \to Y$ is said to be **closed** if for each closed set F in X, f(F) is closed in Y.

Definition 2.2.11 A function $f: X \to Y$ is said to be **regular closed** if for each closed set F in X, f(F) is regular closed in Y.

Definition 2.2.12 A function $f: X \to Y$ is said to be **continuous** if for each closed set U in Y, $f^{-1}(U)$ is closed in X.

Definition 2.2.13 A function $f: X \to Y$ is said to be **regular continuous** if for each closed set F in Y, $f^{-1}(F)$ is regular closed in X.

Definition 2.2.14 A function $f: X \to Y$ is said to be **gc-irresolute** if for each g-closed set F in Y, $f^{-1}(F)$ is g-closed in X.

Definition 2.2.15 A topological space X is called a $T_{\frac{1}{2}}$ -space if every g-closed set in X is closed in X.

Definition 2.2.16 A topological space X is called a **regular** $T_{\frac{1}{2}}$ -space if every rg-closed set in X is regular closed in X.

Definition 2.2.17 A topological space X is called **normal** if for each closed sets A and B in X with $A \cap B = \emptyset$, there exist open sets U and V in X such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Definition 2.2.18 A topological space X is called **g-normal** if for each closed set A in X and each regular closed set B in X with $A \cap B = \emptyset$, there exist g-open sets U and V in X such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Theorem 2.2.19 If a topological space X is normal, then X is g-normal, but not conversely.

Proof. See [3] page 23.