Chapter 1

INTRODUCTION

A Taylor method for solving Fredholm integral equations has been presented by Kanwal and
Liu [2]. Then this method has been extended by Sezer to Volterra integral equations [4], to
second-order linear differential equations [3] and to high-order linear Volterra-Fredholm integro-

differential equations in the form
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where Py (z) (k=0,1,2,...,m), f (z), K (z,%) and K3 (z,t) are functions having nth (n > m)
derivatives on an interval a < z,t < b and a, b, ¢, aij, bij, ¢, Ai, Az and y; are appropriate
constants [6]. The solution, which is a Taylor polynomial of degree N, is expressed in the form
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The algorithm of finding Taylor solution is following. First, we differentiate both sides of
high-order linear Volterra-Fredholm integro-differential equation n times and then substituting
the Taylor series for the unknown function in the resulting equation. Then,we wrote the result-
ing equation in the matrix form and apply the given conditions. Finally, the obtained linear
algebraic system has been solved approximately by a suitable truncation scheme.

In our study, the basic ideas of method in [2],[3],[4] and [6] are developed and applied to
the Volterra-Fredholm integro-differential equations, with more terms of high order derivative

under integral sign, in the form
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for some p and g where P (z) (k=0,1,2,...,m), f(z), Ai(z,t) (=0,1,2,...,p; p<m+1),
B;(z.t)(j =0,1,2,....,q; ¢ £m+1), are functions having nth (n > m) derivatives on an in-
terval @ < z,t < b . The conditions and the approximate solution of this equation are of the

same as in (1.2) and (1.3). Thus, y™ (¢) n=0,1,2,..., N are coefficients to be deterrmined.



