TABLE OF CONTENTS

	pag
ACKNOWLADGEMENT	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	x
LIST OF FIGURES	xiii
LIST OF TABLES	xv
ABBREVIATIONS	xvi
CHAPTER I INTRODUCTION	1
1.1 Statement and significance of the problem	. 1
1.2 The red blood cell	3
1.3 Hemoglobin	4
1.3.1 Hemoglobin structure	4
1.3.2 Hemoglobin and oxygen transport	6
1.3.3 Hemoglobin and 2,3-Bisphosphoglycerate	8
1.4 Red cell 2,3-Bisphosphoglycerate	12
1.4.1 Metabolism	12
1.4.2 Regulation	15
1.4.3 Clinical relevance of 2,3-Bisphosphoglycerate	19
1.5 Exercise and 2,3-Bisphosphoglycerate	22
1.6 Objectives of the study	23
CHAPTER II MATERIALS AND METHODS	24
2.1 Chemicals	24
2.2 Instruments	26
2.3 Animal care	27
2.4 Training regimens	27

	page
2.5 Blood collection	28
2.6 2,3-Bisphosphoglycerate assay	30
2.7 Determination of hematological parameters	34
2.7.1 Determination of hematocrit by microhematocrit method	34
2.7.2 Determination of hemoglobin by cyanmethemoglobin method	35
2.7.3 Red blood cell count	38
2.8 The effects of anticoagulants on erythrocyte 2,3-BPG preservation	41
2.8.1 The effects of anticoagulants on erythrocyte 2,3-BPG levels	41
between fresh and stored blood	
2.8.2 The effects of storage on erythrocyte 2,3-BPG levels when	41
potassium oxalate was used as an anticoagulant.	
2.9 Determination of lactic acid by enzymatic method	42
2.10 Determination of glucose by o-toluidine method	44
2.11 Determination of triglyceride by colorimetric Hantzch condensation method	46
2.12 Factors influencing erythrocyte 2,3-BPG levels	49
2.12.1 Animal and preparation of red blood cells	49
2.12.2 The effect of pH on erythrocyte 2,3-BPG levels	50
2.12.3 The effect of temperature on erythrocyte 2,3-BPG levels	52
2.12.4 The effect of A23187 on crythrocyte 2,3-BPG levels	52
2.12.5 The effect of pO ₂ on erythrocyte 2,3-BPG levels	54
2.12.6 The effects of pH, temperature, A 23187 and pO ₂ on	
the quantity of deoxyhemoglobin	54
2.13 Statistical analysis	56
CHAPTER III RESULTS	57
3.1 Effects of anticoagulants on preservation of erythrocyte 2,3-BPG levels.	57
3.1.1 The effects of different anticoagulants on crythrocyte 2,3-BPG levels	57
between fresh and blood stored at 4°C for 5 days.	

		page
	3.1.2 The effects of storage on erythrocyte 2,3-BPG levels when	
	potassium oxalate was used as an anticoagulant.	59
	3.2 Effects of exercise programs on carbohydrate and lipid metabolism.	62
	3.2.1 The effects of sedentary programs on blood lactate,	
	triglycerides and glucose levels.	62
	3.2.2 The effects of endurance training programs on blood lactate,	
. s.	triglycerides and glucose levels.	63
	3.2.3 The effects of exhaustion training programs on blood lactate,	
	triglycerides and glucose levels.	64
	3.2.4 The effects of acute exhaustion and endurance exhaustion programs	
	on blood lactate, triglycerides and glucose levels.	66
	3.3 Effects of exercise programs on erythrocyte 2,3-BPG levels.	67
	3.4 Factors influencing crythrocyte 2,3-BPG levels.	69
	3.4.1 The effects of pH on erythrocyte 2,3-BPG levels.	69
	3.4.2 The effects of temperature on erythrocyte 2,3-BPG levels	71
	3.4.3 The effects of A23187 on erythrocyte 2,3-BPG levels	73
	3.4.4 The effects of pO ₂ on erythrocyte 2,3-BPG levels	75
	3.4.5 The effects of pH, temperature, A 23187 and pO_2 on	
	the quantity of deoxyhemoglobin	78
CHAP	PTER IV DISCUSSIONS	81
CHAP	PTER V CONCLUSIONS	92
REFERENCES		
CURRICULUM VITAE		

•

LIST OF FIGURES

Figures			page
1-1 Model of the role of hemoglobin in	oxygen transport		3
1-2 The quaternary structure of hemoglo	obin molecule		5
1-3 Oxygen dissociation curve of hemor	globin (whole blood), a	and myoglobin	
at 37°C and pH 7.40			7
1-4 The effect of 2,3-BPG on the oxyger	nation of phosphate-fre	e hemoglobin.	9
1-5 Mode of binding of 2,3-BPG to hum	nan deoxyhemoglobin.	2,3-BPG interacts with	
free positively charged groups on ea	ach β chain.		11
1-6 Glycolytic pathway within red cell.	Glucose enters red cel!	and is metabolized to	
pyruvate and lactate, which escape	from the cell.		13
1-7 The Rapoport-Luebering shunt.			14
2-1 Schematic representation of the pro	ocedure in this experim	ent.	29
2-2 The whole procedure of 2,3-BPG as	ssay.		33
2-3 Hemoglobin standard calibration co	urve.		37
2-4 Hemocytometer squares.			40
2-5 Manner of counting erythrocytes in	one of small squares.		40
2-6 Schiff base reaction between o-toui	/ dine and aldehyde grou	ups of glucose	44
2-7 The sequential reaction in colorime	tric Hantzsch condensa	ution	47
2-8 The procedure in the experiment of	studying the factors in	ifluencing crythrocyte	
2,3-BPG levels.			51
2-9 Structure of calcium ionophore A23	3187		53
3-1 Effects of anticoagulants on erythro	ocyte 2,3-BPG levels in	n fresh and blood stored	
at 4°C for 5 days.			58
3-2 Effects of storage on erythrocyte 2,	3-BPG levels when pot	tassium oxalate was	
used as an anticoagulant.			61
3-3 The effects of pH on erythrocyte 2,	3-BPG levels at 37°C f	for 15 minutes.	71
3-4 The effects of temperature on eryth	rocyte 2,3-BPG levels	at pH 7.40 for 15 minutes.	73

Figures	page
3-5 The effects of A23187 on erythrocyte 2,3-BPG levels at pH 7.40, 37°C	
for 15 minutes.	75
3-6 The effects of pO ₂ on erythrocyte 2,3-BPG levels at pH 7.40, 37°C	
for 15 minutes.	76
3-7 Absorption spectrum of rat hemolysate from incubation at atmospheric pO ₂	
and under nitrogen gas, 37°C for 15 minutes.	79
3-8 Absorption spectrum of rat hemolysate incubation at 37°C and 43°C for 15 minutes.	80

LIST OF TABLES

Tables	page
2-1 Summary of endurance training program.	28
2-2 Summary of exhaustion training program.	28-
2-3 Dilutions and A ₅₄₀ for hemoglobin standard curve.	36
3-1 Effects of anticoagulants on erythrocyte 2,3-BPG levels between fresh and	
blood stored at 4°C for 5 days.	58
3-2 Effects of storage on erythrocyte 2,3-BPG levels when potassium oxalate	
was used as an anticoagulant and blood stored at 4°C for 30 days.	60
3-3 The effects of sedentary programs on blood lactate, triglycerides and glucose levels.	63
3-4 The effects of endurance training programs on blood lactate, triglycerides and	
glucose levels.	64
3-5 The effects of exhaustion training programs on blood lactate, triglycerides and	
glucose levels.	65
3-6 The effects of acute exhaustion and endurance exhaustion programs on blood lactate,	
triglycerides and glucose levels.	67
3-7 The effects of exercise programs on erythrocyte 2,3-BPG levels.	68
3-8 The effects of pH on crythrocyte 2,3-BPG levels at 37°C for 15 minutes.	70
3-9 The effects of temperature on erythrocyte 2,3-BPG levels at pH 7.40 for 15 minutes.	72
3-10The effects of A23187 on erythrocyte 2,3-BPG levels at pH 7.40, 37 °C for 15 minutes.	7 4
3-11 The effects of pO ₂ on crythrocyte 2,3-BPG levels at pH 7.40, 37 °C for 15 minutes.	76

ABBREVIATIONS

A absorbance

ACC acetyl CoA carboxylase

ACD acid-citrate dextrose

ADP adenosine 5'- diphosphate

AMPK AMP-activated protein kinase

AMPKK AMP-activated protein kinase kinase

ATP adenosine 5'-triphosphate

1,3-BPG 1,3-bisphosphoglycerate

2,3-BPG 2,3-bisphosphoglycerate

BPGM bisphosphoglycerate mutase

BPGP bisphosphoglycerate phosphatase

BSA bovine serum albumin

°C degree of celsius

Ca²⁺ calcium ion

CPD citrate-phosphate dextrose

CPT I carnitine palmitoyl transferase I

eNOS erythrocyte nitric oxide synthase

FFA free fatty acid

Hb hemoglobin

HBSS Hank's Balance Salt Solution

GA-3P glyceraldehyde-3-phosphate

GA-3PD glyceraldehyde-3-phosphate dehydrogenase

K⁺ potassium ion

LDH lactate dehydrogenase

g gram

m/min meter per minute

mg milligram

L liter

dl deciliter

Mg²⁺ magnesium ion

ml milliliter

mM millimolar

nm nanometer

μl microlitter

µM micromolar

MW molecular weight

min minute

Na[†] sodium ion

% percent

Pi inorganic phosphate

pO₂ partial pressure of oxygen

PFK phosphofructokinase

2-PG 2-phosphoglycerate

3-PG 3-phosphoglycerate

PGK phosphoglycerate kinase

PGM phosphoglycerate mutase

PK pyruvate kinase

rbc red blood cell

rpm revolution per minute

w/v weight/volume