TABLE OF CONTENTS

Title	Page
Acknowledgements	iii
Abstract (English)	v
Abstract (Thai)	viii
List of Tables	xxi
List of Illustrations	xxiii
Abbreviations and Symbols	xxix
Chapter 1 Introduction	
1.1) Background	1
1.2) Glucosinolates	
1.2.1) Definition and chemical structure	5
1.2.2) Classification of glucosinolates	6
	6
1.2.3) Distribution of glucosinolates	
1.2.4) Methods for determination of glucosinolates	14
1.2.5) Compartmentalization of myrosinase and glucosinolates in plant	
tissues	16
1.2.6) Glucosinolate degradation	17
1.2.7) Glucosinolate metabolism in <i>Cruciferous</i> plants	21

1.2.8) Significance of glucosinolates	21
1.2.9) Significance of glucosinolate breakdown metabolites	23
1.3) Plant myrosinases	
1.3.1) Occurrence of myrosinase isoenzymes	25
1.3.2) Isolation of plant myrosinases	26
1.3.3) Physico-chemical properties of plant myrosinases	29
1.3.4) Myrosinase-binding proteins	32
1.3.5) Methods for activity assay of enzyme myrosinase	33
1.4) Glucosinolate-degrading microorganisms and microbial myrosin	nases
1.4.1) Screening of glucosinolate-degrading microorganisms	34
1.4.2) Assessment of glucosinolate degradative potential	35
1.4.3) Myrosinase in glucosinolate degradation via intact micro	bial cells 35
1.4.4) Cultivation for myrosinase production	36
1.4.5) Isolation of microbial myrosinases	40
1.4.6) Physico-chemical properties of isolated microbial myrosi	inases 41
1.5) Rationales and purpose of the study	42
Chapter 2 Materials and Methods	
2.1) Materials	
2.1.1) Chemicals	44
2.1.2) Instruments	48
2.2) General methods	

2.2.1) Preparation of sinigrin agar plate	49
2.2.2) Preparation of mustard extract medium	49
2.2.3) Determination of protein content	50
2.2.4) Glucosinolate assay	50
2.2.5) Preparation of spore suspension	51
2.2.6) Measurement of fungal cell biomass	51
2.2.7) Disruption of fungal cell pellet	52
2.2.8) Activity assay of enzyme myrosinase	52
2.2.9) Determination of reducing sugar	53
2.2.10) GC analysis of sinigrin or glucosinolate breakdown products	53
2.2.11) Disruption of bacterial cells	54
2.3) Screening and characterization of glucosinolate-degrading microorganisms	
2.3.1) Sample collection	54
2.3.2) Screening and preliminary identification of glucosinolate-	
degrading microorganisms	55
2.3.3) Preliminary examination of sinigrin degradation potential and	
myrosinase-producing ability by glucosinolate-degrading	
microorganisms in liquid culture	55
2.3.4) Scanning electron microscope as a tool for identification of a	
selected myrosinase-producing fungus	56
2.3.5) Pre-culture of Aspergillus sp. NR-4201	57
2.3.6) Sinigrin degradation by Aspergillus sp. NR-4201 in liquid culture	58

2.3.7)	Glucosinolate degradation by Aspergillus sp. NR-4201 in liquid	
	culture	59
2.4) Produc	ction of intracellular myrosinase from Aspergillus sp. NR-4201	
2.4.1)	Effect of pH of cultured medium on myrosinase production	60
2.4.2)	Effect of glucosinolate concentration on myrosinase production	61
2.4.3)	Effect of incubation temperature on myrosinase production	61
2.4.4)	Effect of inoculum size and spore age on myrosinase production	61
2.4.5)	Effect of L-ascorbic acid or inorganic salt supplement on	
	myrosinase production	61
2.4.6)	Preservation of mycelium containing myrosinase	62
2.4.7)	Stability of crude myrosinase extract	62
2.5) Purific	cation of Aspergillus myrosinase	
2.5.1)	Ammonium sulfate fractionation	63
2.5.2)	Dialysis	63
2.5.3)	DEAE Sephadex A-25 chromatography (I)	64
2.5.4)	Ultrafiltration	67
2.5.5)	DEAE Sephadex A-25 chromatography (II)	67
2.5.6)	Sephadex G-100 gel-filtration	68
2.5.7)	SDS-polyacrylamide gel electrophoresis	69
2.5.8)	Sephadex G-200 gel-filtration	71
2.6) Chara	cterization of the purified Aspergillus myrosinase	

2.6.1) Methods for activity assay of the purified Aspergillus myrosinase	71
2.6.2) Extinction coefficient for sinigrin	73
2.6.3) Effect of enzyme concentration on activity assay	73
2.6.4) Optimum pH	73
2.6.5) Optimum temperature	74
2.6.6) pH stability	74
2.6.7) Temperature stability	74
2.6.8) Preservation of the purified Aspergillus myrosinase	74
2.6.9) Effect of some inorganic salts and organic compounds on enzyme	
activity	75
2.6.10) Substrate specificity	76
2.6.11) Kinetic constants	76
2.6.12) Inhibition of sinigrin hydrolysis by pNPG	76
2.6.13) Inhibition of pNPG hydrolysis by sinigrin	77
2.6.14) Inhibition of sinigrin hydrolysis by D-glucose	77
2.7) Analysis of glucosinolate breakdown products by gas chromatography	
2.7.1) Products from sinigrin degradation by the purified Aspergillus	
myrosinase and Sinapis alba myrosinase	77
2.7.2) Products from sinigrin degradation by disruted fungal cells of the	
Aspergillus	78
2.7.3) Products from glucosinolate degradation (Brassica juncea seeds)	
by crude Aspergillus myrosinase	78

2.7.4)	GS-MS analysis of sinigrin breakdown products	79
Chapter 3	Results	
3.1) Screen	ning and characterization of glucosinolate-degrading microorganisms	
3.1.1)	Screening and preliminary identification of glucosinolate-	
	degrading microorganisms	80
3.1.2)	Preliminary examination of sinigrin degradation potential and	
	myrosinase-producing ability by glucosinolate-degrading	
	microorganisms in liquid culture	88
3.1.3)	Scanning electron micrographs of Aspergillus sp.	91
3.1.4)	Pre-culture of Aspergillus sp. NR-4201	93
3.1.5)	Sinigrin degradation by Aspergillus sp. NR-4201 in liquid culture	95
3.1.6)	Glucosinolate degradation by Aspergillus sp. NR-4201 in liquid	
	culture	98
3.2) Produ	ction of intracellular myrosinase from Aspergillus sp. 4201	
3.2.1)	Effect of pH of cultured medium on myrosinase production	103
3.2.2)	Effect of glucosinolate concentration on myrosinase production	106
3.2.3)	Effect of incubation temperature on myrosinase production	106
3.2.4)	Effect of inoculum size and spore age on myrosinase production	108
3.2.5)	Effect of L-ascorbic acid or inorganic salt supplement on	
	myrosinase production	110
3.2.6)	Preservation of mycelium containing myrosinase	113

3.2.7) Stability of crude myrosinase extract	113				
3.3) Purification of Aspergillus myrosinase					
3.3.1) Ammonium sulfate fractionation	115				
3.3.2) Preliminary study of separating conditions of Aspergillus					
myrosinase by small DEAE Sephadex A-25 columns	116				
3.3.3) DEAE Sephadex A-25 chromatography (I)	118				
3.3.4) DEAE Sephadex A-25 chromatography (II)	119				
3.3.5) Sephadex G-100 gel-filtration	120				
3.3.6) SDS-PAGE of the Aspergillus myrosinase purification	122				
3.3.7) Sephadex G-200 gel-filtration of the purified Aspergillus					
myrosinase	125				
3.4) Characterization of the purified Aspergillus myrosinase					
3.4.1) Extinction coefficient for sinigrin	128				
3.4.2) Effect of enzyme concentration on activity assay	128				
3.4.3) Optimum pH	129				
3.4.4) Optimum temperature	129				
3.4.5) pH stability	131				
3.4.6) Temperature stability	131				
3.4.7) Preservation of the purified Aspergillus myrosinase	132				
3.4.8) Effect of some inorganic salts and organic compounds on enzyme					
actvity	133				
3.4.9) Substrate specificity	135				

3.4.10) Kinetic constants	137
3.4.11) Inhibition of sinigrin hydrolysis by pNPG	139
3.4.12) Inhibition of pNPG hydrolysis by sinigrin	140
3.4.13) Inhibition of sinigrin hydrolysis by D-glucose	141
3.5) Analysis of glucosinolate breakdown products by gas chromatography	
3.5.1) Products from sinigrin degradation by the purified Aspergillus	
myrosinase and Sinapis alba myrosinase	142
3.5.2) Products from sinigrin degradation by disruted fungal cells of the	
Aspergillus	143
3.5.3) Products from glucosinolate degradation (Brassica juncea seeds)	
by crude Aspergillus myrosinase	147
3.5.4) GS-MS analysis of sinigrin breakdown products	149
Chapter 4 Discussion and Conclusion	
4.1) Discussion	
4.1.1) Screening and characterization of a myrosinase-producing fungus	155
4.1.2) Enzyme production in liquid culture	158
4.1.3) Enzyme purification	161
4.1.4) Physico-chemical properties of the purified Aspergillus myrosinase	162
4.1.5) Substrate specificity and kinetic constants	164
4.1.6) Enzyme inhibition	165
4 1.7) Analysis of glucosinolate breakdown products	166

4.2)	Conclusion	168
Refe	rences	170
App	endix	
A-1	Calibration curve for the determination of protein by Lowry's method	185
A-2	Calibration curve for the determination of sinigrin by spectrophotomeric	
	method	185
A-3	Calibration curve for the determination of glucose by coupled-enzyme	
	method	186
A-4	Calibration curve for the determination of total glucosinolates by coupled	
	-enzyme method	186
A-5	Calibration curve for the determination of glucose by glucose-oxidase	
	method	187
A-6	Calibration curve for the determination of reducing sugar	187
A-7	Calibration curve for the determination of allylcyanide and allylisothio-	
	cyanate by a Shimadsu A 14 gas chromatograph (carbowax column)	188
A-8	Calibration curve for the determination of allylcyanide and allylisothio-	
	cyanate by a Hewlett-Packard 5890 series II gas chromatograph	
	(carbowax column)	188
A-9	Gradient forming apparatus	189

liquid culture					
oorting paper-I	: Rapid dete	ection of my	rosinase pro	ducing fung	gi: a plate
method based	on opaque b	arium sulpha	ate formation	1	

LIST OF TABLES

Title		Page
1.1	Aliphatic glucosinolates	7
1.2	Aromatic glucosinolates	9
1.3	Indole glucosinolates	10
1.4	Glycated glucosinolates	11
1.5	Some varieties of Brassica vegetables	13
1.6	Glucosinolate constituents in some Brassica crops	14
3.1	Summaries of glucosinolate-degrading microorganisms isolated from	
	decayed mustard seed meal samples, obtained in Lamphun, Thailand	81
3.2	Summaries of ammonium sulfate fractionation of crude Aspergillus	
	myrosinase	115
3.3	Summaries of the separation of Aspergillus myrosinase by small columns	
	of DEAE Sephadex A-25	117
3.4	Summaries of Aspergillus myrosinase purification	122
3.5	Relative mobility and log molecular weight of standard protein markers	
	by SDS-PAGE	124
3.6	Distribution coefficient and log molecular weight of standard protein	
	markers by Sephadex G-200 chromatography	125

3.7	Effect of some inorganic salts and organic compounds on enzyme	
	activity of the purified Aspergillus myrosinase	134
3.8	Substrate specificity of the purified Aspergillus myrosinase	136
4.1	Comparison of myrosinase production by Aspergillus sp. NR-4201, A.	
	sydowi IFO4284, A. sydowi QM31c and A. niger AKU3302	160
4.2	Comparison of physico-chemical properties of the purified myrosinases	
	from Aspergillus sp. NR-4201, A. sydowi IFO4284, A. niger AKU3302	
	and Sinapis alba.	163

LIST OF ILLUSTRATIONS

Figu	ire 6	Page
1.1	Chemical structure of glucosinolates	5
1.2	Mechanism of nitrile and isothiocyanate formation from glucosinolate	
	degradation	18
1.3	Mechanism of thiocynate formation from glucosinolate degradation	19
1.4	Mechanism of cyanoepithioalkane formation from glucosinolate	
	degradation	20
1.5	Chemical structures of glucotropaeolin and its derivatives	22
3.1	Growth of gram negative bacterium in nutrient agar plate for 2 days	83
3.2	Growth of glucosinolate-degrading microorganisms in sinigrin agar plate	
	for 4 days	84
3.3	Growth of glucosinolate-degrading microorganisms in sinigrin agar plate	
	for 5 days	84
3.4	Growth of Rhizopus sp. in potato dextrose agar plate for 4 days	86
3.5	Growth of <i>Mucor</i> sp. in potato dextrose agar plate for 4 days	86
3.6	Growth of Aspergillus sp. in potato dextrose agar plate for 4 days	87
3.7	Growth of Aspergillus sp. in potato dextrose agar plate for 7 days	87
3.8	Growth profiles of gram negative bacterium in sinigrin-glucose medium	88

3.9	Growth of Rhizopus sp. in sinigrin-glucose medium	89
3.10	Growth of Mucor sp. in sinigrin-glucose medium	90
3.11	Growth of Aspergillus sp. in sinigrin-glucose medium	90
3.12	Scanning electron micrographs of Aspergillus sp. NR-4201	92
3.13	Pre-culture of Aspergillus sp. NR-4201 in G-, S- and SG medium.	94
3.14	Liquid culture of induced and non-induced cells of Aspergillus sp. NR-	
	4201 in sinigrin medium.	96
3.15	Gas chromatogram of sinigrin (or glucosinolate) hydrolytic products in	
	liquid culture of Aspergillus sp. NR-4201	97
3.16	Liquid culture of induced and non-induced cell of Aspergillus sp. NR-	
	4201 in sinigrin-glucose medium	99
3.17	Liquid culture of induced and non-induced cell of Aspergillus sp. NR-	
	4201 in mustard extract medium	100
3.18	Liquid culture of Aspergillus sp. NR-4201 in mustard extract medium by	
	one-step culture	102
3.19	Growth profiles of Aspergillus sp. NR-4201 in mustard extract medium	
*	at pH 5.6, 6.5 and 7.2	104
3.20	Relationship between pH of cultured medium and myrosinase production	
	by Aspergillus sp. NR-4201	105
3.21	Fungal mycelium of Aspergillus sp. NR-4201 grown in mustard extract	
	medium	10:

3.22	Growth profiles of Aspergillus sp. NR-4201 in mustard extract medium	
	at glucosinolate concentrations of 2.8, 5.5 and 8.3 mM	107
3.23	Relationship between glucosinolate concentration and myrosinase	
	production by Aspergillus sp. NR-4201	108
3.24	Growth profiles of Aspergillus sp. NR-4201 in mustard extract medium	
	at 37 and 30 °C	109
3 .25	Relationship between inoculum concentration and myrosinase production	
	by Aspergillus sp. NR-4201	110
3.26	Growth profiles of Aspergillus sp. NR-4201 in mustard extract medium	
	with 5 mM L-ascorbic acid or without any supplements	111
3.27	Relationship between L-ascorbic acid supplement and myrosinase	
	production by Aspergillus sp. NR-4201	112
3.28	Stability of myrosinase activity in fungal mycelium	113
3.29	Stability of crude Aspergillus myrosinase	114
3.30	Elution profiles of DEAE Sephadex A-25 chromatography (I) of the	
	Aspergillus myrosinase	119
3.31	Elution profiles of DEAE Sephadex A-25 chromatography (II) of the	
	Aspergillus myrosinase	120
3.32	Elution profiles of Sephadex G-100 chromatography of the Aspergillus	
	myrosinase	121
3.33	SDS-PAGE of the Aspergillus myrosinase	123

3.34	Calibration curve for the determination of molecular weight by SDS-	
	PAGE	124
3.35	Elution profiles of Sephadex G-200 chromatography of the purified	
	Aspergillus myrosinase and molecular weight protein markers	126
3.36	Calibration curve for the determination of molecular weight by Sephadex	
	G-200 chromatography	127
3.37	Effect of enzyme concentration on the determination of myrosinase	
	activity by spectrophotometric assay	128
3.38	Effect of enzyme concentration on the determination of myrosinase	
·	activity by coupled-enzyme assay	129
3.39	pH activity plots of the purified Aspergillus myrosinase	130
3.40	Temperature activity plots of the purified Aspergillus myrosinase	130
3.41	pH stability plots of the purified Aspergillus myrosinase	131
3.42	Temperature stability plots of the purified Aspergillus myrosinase	132
3.43	Stability of the purified Aspergillus myrosinase at 4°C in 10 mM sodium	
	phosphate buffer, pH 6, 10 mM sodium phosphate buffer, pH 7 and 10	
	mM sodium phosphate buffer, pH 7 with 0.02 % sodium azide	133
3.44	Lineweaver-Burk plots of sinigrin-hydrolyzing activity of the purified	
	Aspergillus myrosinase by spectrophotometric assay	137
3.45	Lineweaver-Burk plots of sinigrin-hydrolyzing activity of the purified	
	Aspergillus myrosinase by coupled-enzyme assay	138

3.46	Lineweaver-Burk plots of pNPG-hydrolyzing activity of the purified	
	Aspergillus myrosinase	138
3.47	Double-reciprocal plots of sinigrin-hydrolyzing activity of the purified	
	Aspergillus myrosinase with pNPG inhibitor	139
3.48	Double-reciprocal plots of pNPG-hydrolyzing activity of the purified	
	Aspergillus myrosinase with sinigrin inhibitor	140
3.49	Double-reciprocal plots of sinigrin-hydrolyzing activity of the purified	
	Aspergillus myrosinase with D-glucose inhibitor	141
3.50	Gas chromatogram of standard allylcyanide and allylisothiocyanate by a	
	Hewlett-Packard 5890 series II gas chromatograph (carbowax column)	143
3.51	Gas chromatogram of breakdown products from sinigrin degradation by	
	the purified Aspergillus myrosinase at pH 4, 5, 6, 7, 7.4 and 8	144
3.52	Gas chromatogram of breakdown products from sinigrin degradation by	
	Sinapis alba myrosinase at pH 4, 5, 6, 7, 8 and 9	145
3.53	Gas chromatogram of breakdown products from sinigrin degradation by	
	disrupted fungal cells of the Aspergillus	146
3.54	Gas chromatogram of breakdown products from glucosinolate degrada-	
	tion (Brassica juncea seeds) by crude Aspergillus myrosinase	148
3.55	Contents of glucosinolate breakdown compounds	149
3.56	Gas chromatogram of sinigrin breakdown products by a Hewlett-Packard	
	6890 series gas chromatograph ((5 %)-diphenyl-(95 %)-dimethylpoly-	
	siloxane column)	150

3.57	Mass spectrum (electron impact based) of major product from the	
	degradation of sinigrin and reference spectrum of allylisothiocyanate	151
3.58	Mass spectrum (electron impact based) of minor product from the	
	degradation of sinigrin	152
3.59	Gas chromatogram of sinigrin breakdown products by a Hewlett-Packard	
	6890 series gas chromatograph (polydimethylsiloxane column)	153
3.60	Mass spectrum (chemical impact based) of minor and major products	
	from the degradation of sinigrin	154

ABBREVIATIONS AND SYMBOLS

ATP adenosine triphosphate

°C degree celcius

ε extinction coefficient

×g relative gravity

g gram

mg milligram

G-6-PD glucose-6-phosphate dehydrogenase

HK hexokinase

liter

μl microliter

ml milliliter

m meter

cm centrimeter

nm nanometer

PDA potato dextrose agar

K_m Michaelis-Menten's constant

 K_{i} inhibition constant

 K_{react} reactivation constant

NADP nicotinamide adenine dinucleotidephosphate

rpm revolution per minute

min minute

sec second

[S] substrate concentration

U unit

v velocity

 $V_{\rm max}$ maximum velocity