#### APPENDIX A

# Reducing sugar determination by DNS method

# Chemical reagents

| DNS (Dinitrosalio               | ylic acid) | 10.0 g  |
|---------------------------------|------------|---------|
| Na <sub>2</sub> SO <sub>3</sub> |            | 0.5 g   |
| Na-K tartrate                   |            | 182.0 g |
| NaOH                            |            | 10.0 g  |
| Phenol                          |            | 2.0 g   |
| Distilled water                 |            | 1.0 l   |

## DNS solution preparation:

- 1. Dissolve NaOH in 700 ml of distilled water
- 2. Add Na-K tartrate, stir until well dissolve
- 3. Add DNS and stir continuously
- 4. After all DNS is well dissolved add Na<sub>2</sub>CO<sub>3</sub> and phenol, respectively
- 5. Adjust to final volume of 11 with volumetric flask
- 6. Keep DNS solution in brown glass bottle.

### Reducing sugar determination procedure

- 1. Mix 1 ml of sample with 1 ml of DNS solution and boil for 10 min.
- 2. Cool down the sample by immerse the sample tube into cold water immediately, add 5 ml of water, mix well, and measure  $A_{540}$
- 3. Convert  $A_{540}$  to reducing sugar concentration with standard curve

#### Reducing sugar determination by Somogyi and Nelson method

### Chemical reagents

### Copper reagent:

- 1. 10 % CuSO<sub>4</sub>·5H<sub>2</sub>O 100 ml
- 2. Phosphate-tartrate solution:

Dissolve NH<sub>2</sub>HPO<sub>4</sub> 28 g (or NH<sub>2</sub>HPO<sub>4</sub>·12H<sub>2</sub>O 70.5495 g) in 700 ml of distilled water, add Na-K tartrate (tetrahydrate) 40 g, 1N NaOH 100 ml, and Na<sub>2</sub>SO<sub>4</sub> (anhydrous) 120 g, respectively. Adjust to a final volume of 900 ml, store at a room temperature 2 days. If any precipitant occurs, filtrate the solution with Whatman No.4 filter paper

3. Mix solution 1 with solution 2

#### Nelson's asenomolybdate color reagent:

- Dissolve Ammoniummolybdate [(NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·H<sub>2</sub>O] 25 g in distilled water of 450 ml and add 21 ml of Conc. Sulfuric acid
- Dissolve Disodium Arsenate (Na<sub>2</sub>HAsO<sub>4</sub>·7H<sub>2</sub>O) 3 g in distilled water of 25 ml
- Mix solution 1 with solution 2 and store at 37 <sup>o</sup>C, for 48 h before transfer to a brown color bottle. This solution is called Nelson's color reagent.

### Reducing sugar determination

- 1. Mix 1 ml of sample with 1 ml of Copper reagent and boil for 10 min.
- Cool down the sample by immerse the sample tube into cold water immediately and add 1 ml of Nelson's asenomolybdate color reagent, mix well
- 3. Add 5 ml of water, mix well, and measure A<sub>520</sub>
- 4. Convert A<sub>520</sub> to reducing sugar concentration with standard curve

### Standard curve preparation

Xylose standard solution preparation

- 1. Dissolve 0.100 g of xylose in 50 mM Citrate buffer pH 6.0
- 2. Adjust to final volume of 100 ml with the same buffer in volumetric flask
- 3. Prepare xylose in various concentrations by using table A1.
- 4. Determine the amount of reducing sugar by the method previously mentioned

Table A1 Xylose standard solution preparation for standard curve

| Xylose concentration | Xylose solution | 50 mM Citrate      |  |  |  |  |  |  |  |  |
|----------------------|-----------------|--------------------|--|--|--|--|--|--|--|--|
| (µg/ml)              | (μl)            | buffer pH 6.0 (μl) |  |  |  |  |  |  |  |  |
| 1000                 | 1000            | 0                  |  |  |  |  |  |  |  |  |
| 900                  | 900             | 100                |  |  |  |  |  |  |  |  |
| 800                  | 800             | 200                |  |  |  |  |  |  |  |  |
| 700                  | 700             | 300                |  |  |  |  |  |  |  |  |
| 600                  | 600             | 400                |  |  |  |  |  |  |  |  |
| 500                  | 500             | 500<br>600<br>700  |  |  |  |  |  |  |  |  |
| 400                  | 400             |                    |  |  |  |  |  |  |  |  |
| 300                  | 300             |                    |  |  |  |  |  |  |  |  |
| 200                  | 200             | 800                |  |  |  |  |  |  |  |  |
| 100                  | 100             | 900                |  |  |  |  |  |  |  |  |
| 50                   | 50              | 950                |  |  |  |  |  |  |  |  |
| 25                   | 25              | 975                |  |  |  |  |  |  |  |  |
| 0                    | 0 1000          |                    |  |  |  |  |  |  |  |  |
| Total volume         | 1000 µl         |                    |  |  |  |  |  |  |  |  |

#### **APPENDIX B**

## Protein determination by Lowry method

### Chemical reagents

Solution A:

1% (w/v) CuSO<sub>4</sub>·7H<sub>2</sub>O

Solution B:

2% (w/v) Na-K tartrate

Solution C:

0.2 N NaOH

Solution D:

4% (w/v) Na<sub>2</sub>CO<sub>3</sub>

Folin-ciocalteau reagent

### Reagent preparation

#### 1. Solution E

Mix 49 ml of solution C with 49 ml of solution D, and then add 1 ml of each solution A and solution B, respectively. Solution E must be prepared fresh daily.

### 2. Folin-ciocalteau solution

Dilute folin-ciocalteau reagent 1:1 with water

#### Protein determination

- Put 0.5 ml of protein sample in test tube, water as a blank, and then add solution E 2.5 ml; mix well, and leave at room temperature for 10 minutes.
- 2. Add diluted folin-ciocalteau solution 0.25 ml: mix immediately and leave at room temperature for 40 min
- 3. Measure absorbance at 750 nm

## Standard curve preparation

## Protein standard solution preparation

- Dissolve 0.100 g of Bovine serum albumin Fraction V (BSA) in 50 mM Citrate buffer pH 6.0
- 2. Adjust to final volume of 100 ml with the same buffer in volumetric flask
- 3. Prepare BSA in various concentrations by using table B1
- 4. Determine the amount of protein by the procedure mention above

Table B1 Protein standard solution preparation for standard curve

| BSA concentration | BSA solution | Distilled water |  |  |  |  |
|-------------------|--------------|-----------------|--|--|--|--|
| (mg/ml)           | (µI)         | (µا)            |  |  |  |  |
| 1.0               | 1000         | 0               |  |  |  |  |
| 0.9               | 900          | 100             |  |  |  |  |
| 0.8               | 800          | 200             |  |  |  |  |
| 0.7               | 700          | 300             |  |  |  |  |
| 0.6               | 600          | 400             |  |  |  |  |
| 0.5               | 500          | 500             |  |  |  |  |
| 0.4               | 400          | 600             |  |  |  |  |
| 0.3               | 300          | 700             |  |  |  |  |
| 0.2               | 200          | 800             |  |  |  |  |
| 0.1               | 100          | 900             |  |  |  |  |
| 0                 | 0            | 1000            |  |  |  |  |
| Total volume      | 1000 μΙ      |                 |  |  |  |  |

#### APPENDIX C

## Determination of protein molecular weight by SDS-PAGE

Stock solution preparation

1. Acrylamide solution:

Dissolve 29.2 g of acrylamide in 50 ml of distilled water.

2. Bis-acrylamide solution:

Dissolve 0.8 g of Bis-acrylamide in 50 ml of distilled water.

3. 1.5 M Tris-HCl, pH 8.8, concentrated resolving gel buffer:

Dissolve 18.2 g of Tris base in ~80 ml of water, adjust to pH 8.8 with HCl, and adjust to a final volume of 100 ml with water. Store at 4 °C.

4. 0.5 M Tris-HCl, pH 6.8, concentrated stacking gel buffer:

Dissolve 6.1 g of Tris base in ~80 ml of water, adjust to pH 6.8 with HCl, and adjust to a final volume of 100 ml with water.

5. 10% (w/v) Sodium dodecyl sulfate (SDS):

Dissolve 10 g of SDS in ~60 ml of water and adjust to a final volume of 100 ml with water.

6. Loading buffer:

| Water                              | 4.8 | m! |
|------------------------------------|-----|----|
| 0.5 M Tris-HCl, pH 6.8             | 1.2 | ml |
| 10% SDS                            | 2.0 | ml |
| Glycerol                           | 1.0 | ml |
| 0.5 % Bromophenol Blue (w/v water) | 0.5 | ml |

Store at room temperature. The SDS-reducing buffer is prepared by adding 50  $\mu$ l of 2-mercaptoethanol to each 0.95 ml of stock sample buffer before use

### Catalyst

- 10% APS: Dissolve 100 mg Ammonium persulfate (APS) in 1 ml of water. Prepare the APS solution fresh daily
- 2. N,N,N',N' tetramethylethylenediamine (TEMED): Use TEMED undiluted from the bottle. Store cool, dry, and protected from light

## Electrode buffer

5 X concentration of electrode buffer consisting of 15 g Tris, 72 g glycine, and 5 g SDS per 1 l. of water. The concentrated buffer must be stored in glass container. To use, dilute with four part or water.

## Stacking gel and Resolving gel

The formula for stacking gel and resolving gel preparations are shown in table C1 and C2, respectively.

Table C1 Formulation of stacking gel

|                        | Solutions volume |          |  |  |  |  |
|------------------------|------------------|----------|--|--|--|--|
| H <sub>2</sub> O       | 6.10 ml          | 3.05 ml  |  |  |  |  |
| 0.5 M Tris-HCl, pH 6.8 | 2.50 ml          | 1.25 ml  |  |  |  |  |
| Acrylamide             | 0.65 ml          | 0.325 ml |  |  |  |  |
| Bis-Acrylamide         | 0.65 ml          | 0.325 ml |  |  |  |  |
| 10% SDS                | 0.10 ml          | 0.05 ml  |  |  |  |  |
| 10% APS                | 50 μl            | 25 μΙ    |  |  |  |  |
| TEMED                  | 10 µl            | 5 μΙ     |  |  |  |  |
| Total volume           | 10 ml*           | 5 ml*    |  |  |  |  |

\* Use 5 ml formulation for 1 gel preparation, 10 ml formulation of 2 gels preparation

Table C2 Formulation of resolving gel

| Component             | Gel concentration |             |         |          |          |  |  |  |  |  |  |
|-----------------------|-------------------|-------------|---------|----------|----------|--|--|--|--|--|--|
|                       | 7.5%              | 10%         | 12%     | 15%      | 18%      |  |  |  |  |  |  |
| H <sub>2</sub> O      | 4.85 ml           | 4.05 ml     | 3.35 ml | 2.345 ml | 1.345 ml |  |  |  |  |  |  |
| 1.5 M Tris-HCl pH 8.8 | 2.5 ml            | 2.5 ml      | 2.5 ml  | 2.5 ml   | 2.5 ml   |  |  |  |  |  |  |
| 10 % SDS              | 0.1 ml            | 0.1 ml      | 0.1 ml  | 0.1 ml   | 0.1 ml   |  |  |  |  |  |  |
| Acrylamide            | 1.25 ml           | 1.65 ml     | 2 ml    | 2.5 ml   | 3 ml     |  |  |  |  |  |  |
| Bis-acrylamide        | 1.25 ml           | 1.65 ml 2 m |         | 2.5 ml   | 3 ml     |  |  |  |  |  |  |
| 10% APS               | 50 μl             | 50 μΙ       | 50 μl   | 50 μl    | 50 µl    |  |  |  |  |  |  |
| TEMED                 | 5 μΙ              | 5 μΙ        | 5 µl    | 5 μΙ     | 5 μΙ     |  |  |  |  |  |  |
| Total volume          | 10 ml             | 10 ml       | 10 ml   | 10 ml    | 10 ml    |  |  |  |  |  |  |

## Gel staining solution:

- Coomassie gel stain solution: dissolve 1 g of Coomassie brilliant blue R-250 in the mixture of 400 ml of methanol, 100 ml of glacial acetic acid and 500 ml of distilled water.
- 2. Coomassie gel destain solution: a mixture of 400 ml of methanol, 100 ml acid and 500 ml of water.

#### Procedure

### Gel casting

- 1. Clean glass plates and mount to the casting stand.
- 2. Prepare the resolving gel and pipette into the glass cassette until gel reaches the desire height
- Add distilled water on the top of the gel and let it polymerizes for 45 min, the interface between water and gel will appear when the polymerization complete.
- 4. Removes distilled water with tissue paper
- 5. Prepare the stacking gel and pipette into the top of polymerized resolving gel.
- 6. Insert the comb and let the stacking gel polymerized
- 7. After the polymerization finish, remove comb and rinse the wells with distilled water to remove bubbles.

#### Sample preparation

- Prepare loading buffer by mix 50 µl of 2-mercaptoethanol to each 0.95 loading buffer, this step can be omitted, if reduction of disulfide bonds is not desired.
- Mix loading buffer 1 ml with 1 ml of a protein sample, to avoid distort band of protein, sample should be desalted before loading into gel.
- 3. Heat the diluted samples at 95 °C for 4 min by suspending the sample tubes in hot water. Do not store prepared sample.

## Electrophoresis

- 1. Mount the gel cassette into the electrophoresis tank
- 2. Fill the tank with the electrode buffer
- 3. Load samples into wells
- Cover the lid and plug the leads into the electrophoresis power supply
- 5. Switch the power supply on and adjust the voltage to 100 V

- Let the electrophoresis run until the blue front of loading buffer reaches the end of gel
- 7. Turn off the power supply and disassemble gel cassette
- 8. Disassemble the glass plate and take the gel off.
- 9. Immerse the gel into staining solution for 15 min
- 10. De-stain the background color by immerse the stained gel into de-staining solution

### Activity stain

- Mix 1 ml of loading buffer, which no mercaptoethanol content, with 1 ml of a protein sample
- 2. Heat the sample at 70 °C for 10 min
- 3. Electrophoresis is carried out as previously described
- 4. After electrophoresis, to remove SDS, wash gel for 30 min twice with 100 ml of 50mM Citrate buffer pH 6.0 containing 2.5% (v/v) of Triton X 100
- Wash gel for 30 min twice with 100 ml of 50 mM Citrate buffer pH 6.0
- Immerse washed gel in 100 ml of 0.5%(w/v) of beech wood xylan in 50 mM Citrate buffer pH 6.0 and incubated at 55 °C for 30 min
- 7. The gel is stained with 100 ml of Congo red (100mg/ml) for 15 min and de-stained in 1 M NaCl until bands of activity, yellow halos on orange background, become visible.
- 8. Stop the de-staining by adding 2 ml of 0.5% (v/v) glacial acetic acid until the gel color turns from orange to purple.

# APPENDIX D

Table D1 Final Concentration of Ammonium Sulfate: Percentage Saturation at 0 °C

|                             |     |                                      |            |      | -(6  |          | 9      |       |        |      |      |      |             |         |       |     |     |
|-----------------------------|-----|--------------------------------------|------------|------|------|----------|--------|-------|--------|------|------|------|-------------|---------|-------|-----|-----|
| Initial concentration of    |     | Percentage saturation at 0 degree C) |            |      |      |          |        |       |        |      |      |      |             |         |       |     |     |
| ammonium sulfate            | 20  | 25                                   | 30         | 35   | 40   | 45       | 50     | 55    | 60     | 65   | 70   | 75   | 80          | 85      | 90    | 95  | 100 |
| (percentage saturation at 0 |     |                                      | 5          | > ^  | Q(   | <u>)</u> |        |       |        |      |      | R    | <del></del> |         |       |     |     |
| degree C)                   |     |                                      | Soli       | d am | moni | um sı    | ulfate | (grar | ns) to | be a | ddec | to 1 | liter o     | of soli | ution |     |     |
| 0                           | 106 | 134                                  | 164        | 194  | 226  | 258      | 291    | 326   | 361    | 398  | 436  | 476  | 516         | 559     | 603   | 650 | 697 |
| 5                           | 79  | 108                                  | 137        | 166  | 197  | 229      | 262    | 296   | 331    | 368  | 405  | 444  | 484         | 526     | 570   | 615 | 662 |
| 10                          | 53  | 81                                   | 109        | 139  | 169  | 200      | 233    | 266   | 301    | 337  | 374  | 412  | 452         | 493     | 356   | 581 | 627 |
| 15                          | 26  | 54                                   | 82         | 111  | 141  | 172      | 204    | 237   | 271    | 306  | 343  | 381  | 420         | 460     | 503   | 547 | 592 |
| 20                          | 0   | 27                                   | <b>5</b> 5 | 83   | 113  | 143      | 175    | 207   | 241    | 276  | 312  | 349  | 387         | 427     | 469   | 512 | 557 |
| 25                          |     | 0                                    | 27         | 56   | 84   | 115      | 146    | 179   | 211    | 245  | 280  | 317  | 355         | 395     | 436   | 478 | 522 |
| 30                          |     |                                      | 0          | 28   | 56   | 86       | 117    | 148   | 181    | 214  | 249  | 285  | 323         | 362     | 402   | 445 | 488 |
| 35                          |     |                                      |            | 0    | 28   | 57       | 87     | 118   | 151    | 184  | 218  | 254  | 291         | 329     | 369   | 410 | 453 |
| 40                          |     |                                      |            |      | 0 (  | 29       | 58     | 89    | 120    | 153  | 187  | 222  | 258         | 296     | 335   | 376 | 418 |
| 45                          |     |                                      |            |      |      | 0        | 29     | 59    | 90     | 123  | 156  | 190  | 226         | 263     | 302   | 342 | 383 |
| 50                          |     |                                      |            |      |      |          | 0      | 30    | 60     | 92   | 125  | 159  | 194         | 230     | 268   | 308 | 348 |
| 55                          | ·   |                                      |            |      |      |          |        | 0     | 30     | 61   | 93   | 127  | 161         | 197     | 235   | 273 | 313 |
| 60                          |     |                                      |            |      |      |          |        |       | 0      | 31   | 62   | 95   | 129         | 164     | 201   | 239 | 279 |
| 65                          |     |                                      |            |      |      |          |        |       |        | 0    | 31   | 63   | 97          | 132     | 168   | 205 | 244 |
| 70                          |     |                                      |            |      |      |          |        |       |        |      | 0    | 32   | 65          | 99      | 134   | 171 | 209 |
| 75                          |     |                                      |            |      |      |          |        |       |        |      |      | 0    | 32          | 66      | 101   | 137 | 174 |
| 80                          |     |                                      |            |      |      |          |        |       |        |      |      |      | 0           | 33      | 67    | 103 | 139 |
| 85                          |     |                                      |            |      |      |          |        |       |        |      |      |      |             | 0       | 34    | 68  | 105 |
| 90                          |     |                                      |            |      |      |          |        |       |        |      |      |      |             |         | 0     | 34  | 70  |
| 95                          |     |                                      |            |      |      |          |        |       |        |      |      |      |             |         |       | 0   | 35  |
| 100                         |     |                                      |            |      |      |          |        |       |        |      |      |      |             |         |       |     | ٥   |

### Curriculum vitae

Name

Mr. Eiakalak Hemjinda

Date of Birth

12 September 1975

Educational Background

- Bunyawatwitthayalai School Lampang 1987-1993

- Faculty of Agro-Industry, Chiang Mai University B.S. (Biotechnology) second-class honor, 1994-1998

Scholarship

- AIEJ scholarship March-December 1998
- Graduate School research support 1999-2001

Experience

- Short-term training at Songkla Canning company, March-April 1997
- A research student at laboratory of Applied Microbiology, Faculty of Bioresources, Mie University, Japan, March-December 1998