TABLE OF CONTENT

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT IN ENGLISH	iv
ABSTRACT IN THAI	V
LIST OF TABLES	ix
LIST OF ILLUSTRATIONS	x-x
ABBREVIATION AND SYMBOLS	xi
CHAPTER 1 INTRODUCTION AND LITERATURE REVIEWS	
1.1 Introduction	1
1.2 Xylan and Xylanases	1
1.2.1 Xylan	1
1.2.2 Structure and Chemical Properties of Xylan	4
1.2.3 Xylanases	8
1.2.4 Types of Xylanases	9
1.2.4.1 Endo-β-1,4-xylanase	9
1.2.4.2 β -xylosidase	10
1.2.4.3 α-L-arabinofuranosidase	11
1.2.4.4	12
1.2.4.5 Acetyl xylan esterase	14
1.2.4.6 Feruric and <i>p</i> -coumeric acid esterase	15
1.2.5 Xylanase Production	15
1.2.6 Factors Affecting Xylanase Yield	16
1.2.7 Regulation of Xylanase Synthesis	17
1.2.7.1 Induction of xylanase	17
1.2.7.2 Regulation at The Molecular Level	19
1.2.7.3 Catabolite Repression	20
1.2.8 Biochemical Properties of Xylanases	20
1.2.8.1 Carbohydrate Content	21
1 2 8 2 Substrate Specificity	21

	Page
1.2.8.3 Thermophilic Xylanase	22
1.2.8.4 Mechanism of Action of The Xylanases	22
1.2.9 Biotechnological Applications of Xylanases	26
1.3 Actinomycetes	27
1.4 Related Works On Xylanases Production And Purification from	29
Streptomyces	
1.4.1 Xylanase Production	29
1.4.2 Xylanase Purification	34
CHAPTER 2 MATERIALS AND METHODS	37
2.1 Chemical Reagents	37-38
2.2 Equipments	39
2.3 Media	40
2.4 Methods	40-41
2.4.1 Microorganism	41
2.4.2 Determination of Enzyme Activity	42
2.4.3 Determination of Protein	42
2.4.4 Study of Xylanase Production	42
2.4.4.1 Screening for Carbon Sources for Xylanase Production	42
2.4.4.2 Xylanase Production in 5-I Fermentor	43
2.4.5 Study of Partial Purification of Xylanases	43
2.4.5.1 Xylanase Production for Purification Studies	43
2.4.5.2 Ammonium Sulphate Precipitation	44
2.4.5.3 Dialysis	44
2.4.5.4 Partial Purification of Xylanases by Ion-exchange	44
Chromatography	
2.4.5.5 Partial Purification of Xylanases by Gel Filtration	45
Chromatography	
2.4.5.6 Protein Determination by SDS-PAGE	45
2.4.6 Study of Some Properties of Xylanases	46
2.4.6.1 Determination of The Optimum Temperature for Xylanases	46
2.4.6.2 Determination of The Optimum pH for Xylanases	46

	Page
2.4.6.3 Determination of Temperature Stability of Xylanases	46
2.4.6.4 Determination of pH Stability of Xylanases	46
CHAPTER 3 RESULTS AND DISCUSSIONS	47
3.1 Screening of carbon sources for xylanase production	47
3.2 Xylanase production in 5-L fermentor	49
3.3 Partial purification and some properties of xylanases	51
obtained from Streptomyces Ab106.3	
3.3.1 Ammonium sulfate precipitation	51
3.3.2 DEAE-cellulose column chromatography	52
3.3.3 Gel-filtration column chromatography	53
3.4 Some properties of xylanases	55
3.4.1 Optimum temperature for xylanase	55
3.4.2 Optimum pH for xylanase activity	61
3.4.3 Thermal stability of xylanases	66
3.4.4 pH stability of xylanase	70
3.4.5 SDS-PAGE and Zymogram	74-76
3.4.6 Conclusions	78
REFERENCES	
APPENDICES	88-98
CIRRICULUM VITAE	99

LIST OF TABLES

Table	es	Page
1.1	Proportions of sugars and lignin in wood	2
1.2	Properties of purified fungal and Bacterial β -xylosidase	11
1.3	Occurance and properties of α-Arabinofuranosidase	13
1.4	Occurrence of microbial α-Glucuronidases	14
1.5	Xylanases from thermophilic bacteria	23
3.1	The optimum temperature for xylanase activities from Streptomyces	57
	Ab106.3	
3.2	The optimum temperature of some xylanases obtained from	60
	Streptomyces	
3.3	The optimum pH for xylanase activities from Streptomyces Ab106.3	62
3.4	The optimum pH of some xylanases from Streptomyces	65
3.5	Half-life of xylanases from Streptomyces Ab106.3 at various	67
	termperatures	
3.6	Summary of pH stability profiles of xylanases	71
3.7	Xylanase purification	77
3.8	Summary of some properties of xylanases obtained from	79
	Streptomyces Ab106.3	

LIST OF ILLUSTRATIONS

Figures		Page
1.1	Cell wall layer of tracheids and ultrasturctural arrangement of	2
	lignocellulosic compounds.	
1.2	Model of cellulose, hemicellulose, and lignin	3
1.3	The basic backbone of xylan and the substituent groups	4.
1.4	Compositions of O-acetyl-4-O-methylglucuronoxylan	6
1.5	Compositions of arabino-4-O-methylglucuronoxylan	6
1.6	Three-dimensional structure of xylan	7
1.7	Mechanisms of xylanases	8
1.8	Xylanases regulation and expression	19
1.9	Mechanisms of xylanases	24
1.10	Catalytic Mechanisms of XYNII from Trichoderma reesei	25
1.11	A typical drawing of Streptomyces showing filamentous, branching	28
	growth with asexual reproductive spores at filament tips	
3.1	Xylanase production in various carbon sources	47
3.2	CMCase production in various carbon sources	48
3.3	Xylanase and CMCase production in 5-L fermentor	50
3.4	Ammonium sulfate precipitation of crude enzyme	52
3.5	Chromatogram of DEAE-cellulose column chromatography	53
3.6	Chromatogram of Sephadex G-100 column chromatography of	54
	Fraction A	
3.7	Chromatogram of Sephadex G-100 column chromatography of	54
	Fraction B	
3.8	The optimum temperature for crude xylanase	57
3.9	The optimum temperature for partial purified xylanases:	58
	a) fraction A, b) fraction A1, c) fraction A2, and d) fraction A3	
3.10	The optimum temperature for partial purified xylanases:	59
	a) fraction B, b) fraction B1, c) fraction B2, and d) fraction B3	
3.11	The optimum pH for crude xylanase	62

Figure	s s	Page
3.12	The optimum pH for partial purified xylanases:	63
	a) fraction A, b) fraction A1, c) fraction A2, and d) fraction A3	-
3.13	The optimum pH for partial purified xylanases:	64
	a) fraction B, b) fraction B1, c) fraction B2, and d) fraction B3	
3.14	Temperature stability profile of crude xylanase	67
3.15	Temperature stability profiles of partial purifies xylanase:	68
	a) fraction A, b) fraction A1, c) fraction A2, and d) fraction A3	
3.16	Temperature stability profiles of partial purifies xylanase:	69
	a) fraction B, b) fraction B1, c) fraction B2, and d) fraction B3	
3.17	The pH stability profile of crude xylanase	71
3.18	The pH stability profiles of partial purified xylanases:	72
	a) fraction A, b) fraction A1, c) fraction A2, and d) fraction A3	
3.19	The pH stability profiles of partial purified xylanase:	73
	a) fraction B, b) fraction B1, c) fraction B2, and d) fraction B3	
3.20	SDS-PAGE of a) crude enzyme, b) Ammonium sulfate precipitate, c)	74
	fraction A, d) fraction B, and M) molecular weight marker	
3.21	SDS-PAGE of a) fraction A1, b) fraction A2, c) fraction A3, d) fraction	75
	B1, c) fraction B2, f) fraction B3, and M) molecular weight marker	
3.22	Zymogram of a) fraction A1, b) fraction A2, c) fraction A3, d) fraction	76
	B1 e) fraction B2 f) fraction B3 and M) molecular weight marker	

ABBREVIATION AND SYMBOLS

μ Micro I Liter β Beta α Alpha min Minute h Hour Gram[©] g 0 Degree С Celsius Unit U Para р Kilo k Da Dalton MW Molecular weight IU International Unit D Dextro levo T ½ Half life per