TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (English)	iv
ABSTRACT (Thai)	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SCHEMES	xviii
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER 1: INTRODUCTION	1
1.1 Biodegradable Polymers in Medicine	1
1.1.1 Definitions	1
1.1.2 The Requirements of a Biodegradable Polymer	2
1.2 Mechanisms of Biodegradation	4
1.2.1 Solubilization	4
1.2.2 Ionization followed by Solubilization	4
1.2.3 Enzyme-Catalyzed Biodegradation	4
1.2.4 Simple Hydrolysis	5
1.3 The Need for Biodegradable Materials in Medicine	5
1.3.1 The Temporary Scaffold	5
1.3.2 The Temporary Barrier	6
1.3.3 A Drug Delivery Matrix	6
1.4 Biodegradable Polyesters	7
1.5 Aims of This Study	10

.....

CHAPTER 2 : POLY(L-LACTIDE)		
2.1 Introduction	13	
2.2 Properties of Poly(L-lactide), PLL	16	
2.3 Synthesis of Poly(L-lactide)	17	
2.3.1 Step-growth Polycondensation of L(+)-Lactic Acid	18	
2.3.2 Ring-Opening Polymerization of L(-)-Lactide	19	
2.3.2.1 Sequence of Reactions	19	
2.3.2.2 Type of Initiator/Catalyst Used	20	
2.3.2.3 Nature of the Reaction Conditions Employed	22	
2.4 Biodegradability in the Human Body	24 .	
CHAPTER 3 : MONOMER PREPARATION AND	26	
INSTRUMENTAL METHODS		
3.1 Chemicals, Apparatus and Instruments	26	
3.1.1 Chemicals	26	
3.1.2 Apparatus and Instruments	27	
3.2 Instrumental Methods	28	
3.2.1 Infrared Spectroscopy (IR)	28	
3.2.2 High-Resolution Nuclear Magnetic Resonance	30	
Spectroscopy (¹ H-NMR)		
3.2.3 Differential Scanning Calorimetry (DSC)	31	
3.2.4 Dilute-Solution Viscometry	32	
3.2.4.1 Definitions of Dilute-Solution Viscometry	33	
3.2.4.2 Calculation of Intrinsic Viscosity	35	
3.2.4.3 Intrinsic Viscosity-Molecular Weight Relationship	37	
3.2.5 Gravimetry	37	

;	3.3	L-Lac	tide Prepa	ration, Purifica	tion and Structura	ıl Analysis	39
	(3.3.1	Method of	Synthesis			39
	;	3.3.2	Purification	and Purity An	alysis		41
	;	3.3.3	Structural	Analysis by IR	and ¹ H-NMR Sp	ectroscopy	42
	3.4 Ca	talyst/i	nitiator Pur	ification			48
	•	3.4.1	Stannous (Octoate			49
			3.4.1.1 F	Purification by	Fractional Distillat	tion	49
			3.4.1.2	Structural Anal	ysis by IR Spectro	oscopy	49
			3.4.1.3	Compositional	Analysis by Gas		52
				Chromatograp	hy-Mass Spectror	netry (GC-MS)	
		3.4.2	Stannous	Oxalate			55
		3.4.3	Diethylene	Glycol			56
CHAP	TER 4	l : RE	SULTS	AND DISC	JSSION		59
	4.1 Pc	lymeri	zation Proc	edure			59
	4.2 Pc	lymeri	zation Resu	ults			62
		4.2.1	Polymer Y	ields and Aver	age Molecular We	eights	62
		4.2.2	Polymer T	hermal Transiti	ons		68
	4.3 Pc	olymeri	zation Kine	tics			73
		4.3.1	Gravimetr	у			73
		4.3.2	Infrared S	pectroscopy (F	T-IR)		80
			4.3.2.1	Structural Chai	racterization		80
			4.3.2.2	Kinetic Studies			83
		4.3.3	Proton N	uclear Magnet	ic Resonance		90
			(¹ H-NMI	R) Spectroscop	ру		
			4.3.3.1	Structural Char	acterization		90
			4.3.3.2 H	Kinetic Studies			94

CHAPTER 5 : CONCLUSIONS	99
5.1 Effect of Catalyst Structure	99
5.2 Effect of Polymerization Temperature	106
5.3 Effect of Other Reaction Conditions	110
5.4 Evaluation of Kinetic Methods	111
SUGGESTIONS FOR FURTHER WORK	113
REFERENCES	115
APPENDIX	117
VITA	122

LIST OF TABLES

Table		Page
1.1	Some commercial biodegradable polymer medical products	7
1.2	Abbreviations, names and chemical structures of some synthesis	9
	Biodegradable polyesters	
3.1	Chemicals used in this research project	26
3.2	Apparatus and instruments used in this research project	27
3.3	Nomenclature and definitions used in dilute-solution viscometry	- 33
3.4	Main vibrational assignments in the L(+)-lactic acid and L(-)-lactide	45
	Infrared spectra	
3.5	¹ H-NMR chemical shifts and proton assignments for L(+)-lactic	48
	acid and L(-)-lactide	
3.6	Main vibrational assignments in the commercial and distilled	51
	Sn(Oct) ₂ infrared spectra	
3.7	Main vibrational assignments in the IR spectra of the diethylene	58
	glycol both before and after vacuum distillation	
4.1	Summary of L-lactide polymerization conditions employed in this work	61
4.2	Dilute-solution viscometry data using chloroform as solvent at 25 °C	64
	for the poly(L-lactide) synthesized at 140 °C for 72 hrs. using	
	stannous octoate as catalyst	
4.3	Polymerization of L-lactide at 140 °C using stannous octoate as catalyst	65
4.4	Polymerization of L-lactide at 180 °C using stannous octoate as catalyst	66
4.5	Polymerization of L-lactide at 140 °C using stannous oxalate as catalyst	67
4.6	DSC thermal transitions and melting parameters for poly(L-lactide)	70
	synthesized at 140 °C using Sn(Oct) ₂ as catalyst	

4.7	DSC thermal transitions and melting parameters for poly(L-lactide)	70
	synthesized at 180 °C using Sn(Oct) ₂ as catalyst	
4.8	DSC thermal transitions and melting parameters for poly(L-lactide)	71
	synthesized at 140 °C using SnOx as catalyst	
4.9	Main vibrational assignments in the poly(L-lactide) FT-IR spectra	82
4.10	Values of the absorbance ratios and % conversions from the FT-IR	86
	absorbance spectra for poly(L-lactide) synthesized at 140 °C using	
	Sn(Oct) ₂ and SnOx as catalysts	
4.11	Interpretation of the 1H-NMR spectra of the L-lactide (recrystallized)	93
	and poly(L-lactide) (purified) samples shown in Figure 4.23 and 4.24	
	respectively	
4.12	Interpretation of the 1H-NMR spectra of the polymerizates shown in	98
	Figure 4.25-4.27	

LIST OF FIGURES

Figure		Page
2.1	Nature cycle for the production of polylactide	13
2.2	Simple hydrolysis of poly(L-lactide) leading to its biodegradation pathway	25
3.1	Reduced and inherent viscosity-concentration curves for a typical	36
	polymer sample	
3.2	Apparatus used in the two-step synthesis of L-lactide	40
3.3	DSC melting curve of synthesized L-lactide (after 3 rd recrystallization)	42
3.4	IR spectrum of the L(+)-lactic acid used in this work	43
3.5	Reference IR spectrum of L-lactic acid	43
3.6	IR spectrum of the purified L(-)-lactide synthesized in this work	44
3.7	Reference IR spectrum of L-lactide	44
3.8	60 MHz ¹ H-NMR spectrum of L(+)-lactic acid in CDCl ₃ as solvent	46
3.9	Reference ¹ H-NMR spectrum of approximately 90% lactic acid	46
3.10	60 MHz ¹ H-NMR spectrum of purified L(-)-lactide in CDCl ₃ as solvent	47
3.11	IR spectrum of commercial Sn(Oct) ₂ before fractional distillation	50
	under vacuum	
3.12	IR spectrum of distilled Sn(Oct) ₂ after fractional distillation under vacuum	50
3.13	GC chromatogram of commercial Sn(Oct) ₂	53
3.14	GC chromatogram of distilled Sn(Oct) ₂	53
3.15	Comparison of the MS spectrum of (a) the commercial Sn(Oct) ₂	54
	peak at 3.97 min (in Figure 3.13) with (b) a reference spectrum	
	of 2-ethyl hexanoic acid	
3.16	MS spectrum of the commercial Sn(Oct) ₂ peak at 8.12 min	54
	·(in Figure 3.13) showing the top mass (m/e) peak of 405	
	corresponding to Sn(Oct) ₂	

3.17	Comparison of the MS spectrum of (a) the distilled Sn(Oct) ₂ peak	55	
	at 4.36 min (in Figure 3.14) with (b) a reference spectrum of		
	2-ethyl hexanoic acid		
3.18	Vacuum distillation apparatus used for diethylene glycol purification	56	
3.19	IR spectrum of diethylene glycol before vacuum distillation	57	
3.20	IR spectrum of diethylene glycol after vacuum distillation	57	
4.1	Apparatus used for the ring-opening polymerization of L-lactide	60	
4.2	Apparatus used for the purification of the crude polymer by	60	
	precipitation from solution		
4.3	Reduced (η_{red}) and inherent (η_{inh}) viscosity-concentration plot for	64	
	poly(L-lactide) synthesized at 140 °C for 72 hrs. using stannous		
	octoate as catalyst		
4.4	DSC thermogram of the poly(L-lactide) synthesized at 140 °C for 72 hrs	68	
	using Sn(Oct) ₂ as catalyst		
4.5	DSC thermogram of the poly(L-lactide) synthesized at 180 °C for 6 hrs	69	
	using Sn(Oct) ₂ as catalyst		
4.6	DSC thermogram of the poly(L-lactide) synthesized at 140 °C for 72 hrs	69	
4.0	using SnOx as catalyst	09	
4.7	L-lactide conversion-time profile using Sn(Oct) ₂ as catalyst at 140 °C	77	
			•
4.8	L-lactide M _V -time profile using Sn(Oct) ₂ as catalyst at 140 °C	77	
4.9	L-lactide conversion-time profile using Sn(Oct) ₂ as catalyst at 180 °C	78	
4.10	L-lactide $\overline{\rm M}_{ m V}$ -time profile using Sn(Oct) $_2$ as catalyst at 180 $^{ m o}$ C	78	
4.11	L-lactide conversion-time profile using SnOx as catalyst at 140 °C	79	
4.12	L-lactide \overline{M}_V -time profile using SnOx as catalyst at 140 $^{\circ}$ C	79	
4.13	FT-IR spectrum of the purified poly(L-lactide) synthesized at 140 °C	80	
7.10	for 72 hrs using Sn(Oct) ₂ as catalyst	00	

4.14	FT-IR spectrum of the purified poly(L-lactide) synthesized at 180 °C	81
	for 6 hrs Sn(Oct) ₂ as catalyst	
4.15	FT-IR spectrum of the purified poly(L-lactide) synthesized at 140 °C	81
	for 72 hrs using SnOx as catalyst	
4.16	Reference Fourier-transform (FT) vibrational spectra of poly(L-lactide)	82
4.17	FT-IR spectrum (absorbance mode) of the L-lactide/poly(L-lactide)	85
	polymerisate after 1 hr at 140 °C using SnOx at catalyst	
4.18	FT-IR spectrum (absorbance mode) of the L-lactide/poly(L-lactide)	85
	polymerisate after 48 hrs at 140 °C using SnOx as catalyst	
4.19	Comparison of the % conversion-time profiles using Sn(Oct)2 and	87
	SnOx as catalyst at 140 °C, as catalyst from FT-IR absorbance data	••
4.20	Comparison of the M _V -time profiles using Sn(Oct) ₂ and SnOx as	87
	catalyst at 140 °C, as obtained from dilute-solution viscometry	
4.21	Comparison of the % conversion-time profiles from FT-IR and	89
	gravimetric data for the polymerization of L-lactide using Sn(Oct)2	
	as catalyst at 140 °C	
4.22	Comparison of the % conversion-time profiles from FT-IR and	89
	Gravimetric data for the polymerization of L-lactide using SnOx	
	as catalyst at 140 °C	
4.23	60 MHz ¹ H-NMR spectrum of the poly(L-lactide) synthesized at 140 °C	92
	/ 72 hrs. using stannous octoate as catalyst in CDCl ₃ as solvent at 21 °C	
4.24	60 MHz ¹ H-NMR spectrum of poly(L-lactide) (purified) in CDCl ₃ as	92
	solvent at 21 °C	
4.25	60 MHz ¹ H-NMR spectrum of the polymerizate from the L-lactide	96
	polymerization using Sn(Oct) ₂ as catalyst at 140 °C for 1 hr	
4.26	60 MHz ¹ H-NMR spectrum of the polymerizate from the L-lactide	96
	polymerization using Sn(Oct) ₂ as catalyst at 140 °C for 2 hrs	

4.27	60 MHz ¹ H-NMR spectrum of the polymerizate from the L-lactide	97
	polymerization using Sn(Oct) ₂ as catalyst at 140 °C for 3 hrs	٠.
5.1	Comparison of the % conversion-time profiles (from gravimetry)	100
	using Sn(Oct) ₂ and SnOx as catalysts at 140 °C	
5.2	Comparison of M _V -time profiles (from dilute-solution viscometry)	160
	using Sn(Oct) ₂ and SnOx as catalyst at 140 °C	
5.3	Comparison of the % conversion-time profiles using Sn(Oct)2 as	109
	catalyst at 140 °C and 180 °C	
5.4	Comparison of \overline{M}_V -time profiles using Sn(Oct)2 as catalyst at	109
	140 °C and 180 °C	

LIST OF SCHEMES

SCHEME

5.1 Reaction mechanism for the stannous octoate-catalysed and diethylene glycol-initiated ring-opening polymerization of L-lactide

103

ABBREVIATIONS AND SYMBOLS

T_g glass transition temperature

T_C crystallization/ceiling temperature (depending on context)

T_m crystalline melting point

T_d degradation temperature

M_v viscosity-average molecular weight

DP_n number-average degree of polymerization

b.pt. boiling point

 ΔG_{p} free energy change for polymerization

 ΔH_{m} heat of melting (fusion)

 ΔH_{m}^{*} heat of melting for a 100% crystalline sample

IR infrared spectroscopy

FT-IR fourier-transform infrared spectroscopy

1H-NMR proton nuclear magnetic resonance spectroscopy

GC-MS gas chromatography-mass spectrometry

DSC differential scanning calorimetry

°C degrees Celcius

mg milligram

min minute

hrs. hours

mm Hg millimetres of mercury (pressure)

cm⁻¹ wavenumber

g gram

mmol millimole

ml millilitre

g/mol grams per mole

mol. wt. molecular weight

MHz megahertz

 δ chemical shift (NMR)

ppm parts per million

J/g joules per gram

dl/g decilitres per gram