TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS AND SYMBOLS	xvii
CHAPTER I	1
INTRODUCTION	1
1.1 Overview and Background of This Research	1
1.2 Field-Flow Fractionation	3
1.2.1 Synopsis of Field-Flow Fractionation	3
1.2.2 The FFF Separation Principle	4
1.2.2.1 Instrument Components	4
1.2.2.2 The FFF Channel	5
1.2.2.3 Field Relaxation of the Sample	6
1.2.2.4 Sample Relaxation Time	6
1.2.2.5 Laminar flow in the FFF Channel	6
1.2.2.6 Steric FFF Separations	7
1.2.2.7 Hydrodynamic Lift Forces	9
1.2.2.8 Steric/Hyperlayer Mode of FFF	10
1.2.2.9 Retention Ratio	10
1.3 Detection Systems Used with Field-Flow Fractionation for Size-based Sp	eciation 12
1.3.1 Inductively Coupled Plasma Mass Spectrometry	12
1.3.2 Electrothermal Atomic Absorption Spectrometry	14
1.3.3 Flow Injection Analysis	15
1.4 Research Aims	17

CHAPTER II	19
EXPERIMENTAL	19
2.1 Chemicals and Reagents	19
2.2 Equipment	21
2.3 Samples Preparation	23
2.3.1 Preparation of Silica Gel Sample with Specific Size Ranges	23
2.3.1 Chromatographic Silica (5 and 10 µm)	26
2.3.2 Preparation of the Goethite Coated Silica Particles	27
2.3.3 Preparation of Clay Samples	27
2.3.4 Digestion of Samples	28
2.4 Instrument Set up	28
2.4.1 Gravitational FFF System	28
2.4.2 Reverse Flow Injection Analysis with Chemiluminescence Detec	ction
(r-FIA-CL) for Trace Iron Determination	31
2.4.3 Combination System of GrFFF and r-FIA-CL Detection	32
2.4.4 Combining System of GrFFF and ETAAS Detection	33
2.4.5 Electrothermal AAS Instruments and Conditions	34
CHAPTER III	36
RESULTS AND DISCUSSION	36
3.1 Gravitational Field-Flow Fractionation Instrumentation	36
3.1.1 Cost-effective Gravitational FFF System	36
3.1.1.1 Pumping System	37
3.1.1.2 Injection System	38
3.1.1.3 Separation System (GrFFF Channel)	39
3.1.1.4 Detection System	39
3.1.1.5 Recording System	40
3.1.2 GrFFF Fractograms and Retention Order	40
3.1.2.1 GrFFF Fractograms	40
3.1.2.2 GrFFF Retention Order	40

:

3.1.3 Performance Testing of GrFFF with Silica Gel 60G (<40 µm)	41
3.1.3.1 Effect of Flow Rate	41
3.1.3.2 Effect of Relaxation Time	42
3.1.4 Separation of Chromatographic Silica (5 μm and 10 μm) by	
Gravitational Field-Flow Fractionation	45
3.1.4.1 Sample Overloading	45
3.1.4.2 Effect of Flow Rate	47
3.2 Reverse Flow Injection Analysis with Chemiluminescence Detection by	
Liquid Scintillation Counter	49
3.2.1 Liquid Scintillation Counter as a Chemiluminescence Detector	49
3.2.2 Chemiluminescence Measurements with the rFIA System	50
3.2.3 Use of Laboratory-made automation for the system	56
3.3 Size-based iron speciation by GrFFF with rFIA or ETAAS	58
3.3.1 Total Fe Content of the Fe Coated Silica Particles	58
3.3.2 Separation of the Fe Coated Silica Particles by GrFFF	59
3.3.3 GrFFF-ETAAS of the Fe Coated Silica Particles	60
3.3.4 Average Thickness of the FeOOH Layer on the Silica Particles	62
3.3.5 GrFFF-FIA-CL of the Mixture of 5 and 10 µm of Fe Coated Silica	
Particles	64
3.4 Gravitational Field-Flow Fractionation with Electrothermal Atomic	
Absorption Spectrometry for Size-based Speciation of Iron in Clay Mineral	
Particles	67
3.4.1 Off-line and On-line Determination Iron by GrFFF with ETAAS	67
3.4.2 Development of On-line GrFFF For Iron Size-based Speciation with	
ETAAS	68
3.4.3 Conversion From Elution Time to Diameter	69
3.4.4 Conversion from UV Detector Signal to Eluted Mass	71
3.4.5 Sized-based Fe Distributions	72
3.4.6 Fe Content Distributions	72
3.4.7 Fractograms of Clay Samples	73
3.4.8 Efficiency of Fe Analysis by GrEFF-ETAAS	84

CHAPTER IV	88
CONCLUSIONS	88
REFERENCES	91
APPENDICES	
APPENDIX A	
Void Volume Measurement by the Breakthrough Method and Calculation of	the
Channel Thickness	97
APPENDIX B	
Evaluation of the Digestion Method of Metal Analysis of Clays Sample	99
APPENDIX C	
Performance Test of Asymmetric Flow Field-Flow Fractionation	101
CURRICURUM VITAE	103

LIST OF TABLES

TABLE	Page
Table 1.1 Sedimentation FFF with ICP-MS applic	eations13
Table 1.2 Flow FFF with ICP-MS applications	14
Table 1.3 Summary of iron determination by FIA-	-CL16
Table 2.1 List of chemicals	19
Table 2.2 Graphite furnace temperature program	l used for Fe analysis35
Table 2.3 Fast heating graphite furnace temperatu	ure program 235
Table 3.1 Percentage deviation from either the m	ean value or Fe content of total
digested sample calculated for the four clay	samples86

LIST OF FIGURES

FIGURE		Page
Figure 1.1 Publications on FFF in the	e last decade (1990-1999)	3
Figure 1.2 Cross-section of separation	n channel showing the steps	involved in the
separation mechanism		7
Figure 1.3 Two different modes of se	eparation mechanism in GrF	FF 9
Figure 2.1 Simplified diagram of pro-	cedure of repeated settling r	nethod24
Figure 2.2 Optical microscopy photos	s of the original silica samp	le and the <20 μm
fractions obtained by repeated	settling	25
Figure 2.3 Schematic diagram of the	method used for preparation	n of silica gel
sample with size range <10 μm	n and 10-20 μm	26
Figure 2.4 Components of a gravitation	onal FFF channel	29
Figure 2.5 Schematic diagram of a G	rFFF system showing the ch	nannel and
auxiliary equipment. Arrow lin	nes indicate the flow direction	on in different
position		30
Figure 2.6 Schematic diagram of a re	verse flow injection system	with
chemiluminescence detection f	for trace iron determination,	the reagents used
were C1 8x10 ⁻⁶ M luminol, C2	$2 \cdot 10^{-3} \text{ M H}_2\text{O}_2$ (Flow rate 1.0) mL min ⁻¹), S:
Sample/standard of trace iron.	(Flow rate 1.0 mL min ⁻¹)	31
Figure 2.7 Schematic diagram of the	GrFFF coupled with rFIA-	CL for iron
determination. The reagents u	sed were C1: 10 ⁻⁴ M NaOH	(Flow rate 1.00
mL min ⁻¹), C2: 8x10 ⁻⁶ M lum	inol (Flow rate 1.0 mL min	⁻¹), C3: 10 ⁻³ M
H ₂ O ₂ (Flow rate 3.0 mL min ⁻¹))	32
Figure 2.8 Schematic diagram of the	GrFFF coupled with ETAA	S, C1: 10 ⁻⁴ M
NaOH (Flow rate 0.20 mL mir	n ⁻¹), (a) Off-line GrFFF-ETA	AAS, (b) On-line
GrFFF-ETAAS		33
Figure 3.1 Schematic diagram of a si	imple GrFFF system	37
Figure 3.2 A home made injection p	ort	39
Figure 3.3 The fractograms of silica	gel <10 μm with different fl	low rate. The
carrier was H ₂ O with relaxatio	on time of 30 s	42

Figure 3.4 (a) The fractograms of silica gel $<$ 10 μm with different relaxation time,
carrier was H ₂ O, at flow rate of 1.5 mL min ⁻¹ . (b) Plot of retention volume
(V_r) vs. relaxation time (t_{relax}) 43
Figure 3.5 Fractograms of silica samples size ranges of 10-20 μ m and <10 μ m,
and a mixture(1:1) of 10-20 μm and <10 μm. The carrier was H ₂ O, the flow
rate 2.0 mL min ⁻¹ , and relaxation time was 30 s44
Figure 3.6 Fractograms of the 5 µm chromatographic silica particles at different
sample loading46
Figure 3.7 Plot of sample mass loading vs sample peak area
Figure 3.8 Fractograms of the 5 µm chromatographic silica particles at different
flow rates47
Figure 3.9 Fractograms of the 10 µm chromatographic silica particles at different
flow rates48
Figure 3.10 Effect of flow rate on (a) retention volume and (b) retention ratio of 5
μm and 10 μm silica particles49
Figure 3.11 Scheme of luminol reactions producing chemiluminescence49
Figure 3.12 Effect of pH buffers (0.01 M) of Na ₂ CO ₃ -NaOH, Na ₂ BO ₇ -NaOH,
Na ₂ HPO ₄ -NaOH and Na ₃ PO ₄ -NaOH on CL response at a luminol
concentration of 2x10 ⁻⁶ M, H ₂ O ₂ concentration of 10 ⁻³ M
Figure 3.13 Effect of buffer medium on correlation of iron calibration54
Figure 3.14 Effect of luminol concentration on CL response to added Fe(III)54
Figure 3.15 Effect of the flow rate of hydrogen hydroxide reagent when merging
with a series of luminol plug injections55
Figure 3.16 Chemiluminescence signal of the iron with the reagents used in the
reaction. Iron solution concentrations were 0, 1, 5, 10 µg L-1 recorded by
LabVIEW interfacing56
Figure 3.17 Schematic diagram of the solenoid function for injection luminol into
the rFIA-CL system57
Figure 3.18 The fractogram of a mixture of 5 μm and 10 μm goethite coated silica
particles and the optical microscope pictures of the original mixture and
fractions collected from the shaded regions at the two peak maxima60

Figure 3.19 UV detector fractograms and iron contents of the fractions collected
from GrFFF and determination by off-line ETAAS for the goethite coated
silica, (a) 5 μm, (b) 10 μm63
Figure 3.20 UV (solid line) and Fe concentration (open circles with dashed line)
fractogram of the mixture of 10 µm and 5 µm particles. The Fe
concentration was determined on-line from the GrFFF combined with FIA-
CL detection65
Figure 3.21 UV and Fe off-line GrFFF-ETAAS based fractograms of clay samples
(a) kaolin clay, (b) Red clay, (c) Ball clay 1 and (d) Ball clay 268
Figure 3.22 On-line GrFFF-ETAAS instrumentation
Figure 3.23 (a) Fractograms of 5 and 10 μ m silica particles and (b) plot of log t_r
versus log d70
Figure 3.24 Plots for the kaolin sample (a) UV and Fe based fractograms, (b) Mass
and Fe based particle size distributions, (c) Distribution of Fe
concentrations in the particles as a function of diameter and (d) Mass of Fe
per unit surface area distribution as a function of diameter74
Figure 3.25 Plots for the Red clay sample (a) UV and Fe based fractograms, (b)
Mass and Fe based particle size distributions, (c) Distribution of Fe
concentrations in the particles as a function of diameter and (d) Mass of Fe
per unit surface area distribution as a function of diameter77
Figure 3.26 Plots for the Ball clay 1 sample (a) UV and Fe based fractograms, (b)
Mass and Fe based particle size distributions, (c) Distribution of Fe
concentrations in the particles as a function of diameter and (d) Mass of Fe
per unit surface area distribution as a function of diameter80
Figure 3.27 Plots for the Ball clay 2 sample (a) UV and Fe based fractograms, (b)
Mass and Fe based particle size distributions, (c) Distribution of Fe
concentrations in the particles as a function of diameter and (d) Mass of Fe
per unit surface area distribution as a function of diameter82
Figure 3.28 Comparison of the Fe content obtained from GrFFF-ETAAS (both off
line and on-line slurry injection) and the total Fe content of the digested
original sample85

Figure A1 Measured void volumes at the different flow rates
Figure B1 Metal contents in certified reference sediment materials from certified
values given and found from digestion method99
Figure B2 Some metal contents in clay samples
Figure C1 Asymmetric flow field-flow fractionation channel and separation
mechanism illustration

LIST OF ABBREVIATIONS AND SYMBOLS

d equivalent spherical particle diameter

 F_L lift force

g gravitational acceleration constant

R retention ratio

 t_o void time

 t_r retention time

 t_s settling time

 t_{relax} sample relaxation time

U settling velocity

V° void volume

 V_r retention volume

 $v_{(x)}$ velocity at distance x

 v_r fluid velocity vector at the center of the particle

<v> mean fluid velocity

w channel thickness

x distance from the lower accumulation wall

η viscosity of fluid

γ correction factor for particle migration

 δ distance between the particle and the wall

 $\Delta \rho$ density difference between the particle and the fluid

Sd size-based selectivity

LSC liquid scintillation counter

GrFFF gravitational field-flow fractionation

ETAAS electrothermal atomic absorption spectrometry

r-FIA-CL reverse flow injection with chemiluminescence detection

FAAS flame atomic absorption spectrometry

ICP-MS inductively coupled plasma mass spectrometry