Table of Contents

	page
Acknowledgement	iii
Abstract in Thai	iv
Abstract in English	vi
List of Tables	xii
List of Figures	xiii
List of Abbreviations	xxi
Chapter 1 Introduction 1.1 General background	1
1.2 Purpose and scope of the study1.3 The study area	2 3 5 5
1.4 Previous works on the study area	5
1.4.1 Geophysical survey	
1.4.2 Geology	8
1.4.3 Mineralization	14
Chapter 2 Type of the Geophysical Survey Data	19
2.1 General background	19
2.1.1 Geophysical survey for mineral exploration	19
2.1.2 Airborne geophysical survey in Thailand	19
2.1.3 Ground follow-up surveys over airborne	
anomalous zone	22
2.2 Airborne geophysical data of the study area	22
2.2.1 Aeromagnetic data	22
2.2.2 Airborne radiometric data	22
2.2.3 Airborne VLF electromagnetic data	31
2.2.4 Helicopter-borne electromagnetic data	31
2.3 Ground geophysical data of the study area	31
2.3.1 General procedure	31
2.3.1.1 Data presentation	31 35
2.3.1.2 Geophysical anomaly	35
2.3.1.3 Working sequence	دد

2.3.2 Magnetic survey	36
2.3.3 Horizontal loop electromagnetic survey	38
2.3.4 Very low frequency electromagnetic	
(VLF-EM) survey	38
2.3.5 Terrain conductivity measurement	41
2.3.6 Time domain electromagnetic survey	41
2.3.7 Resistivity survey	45
2.3.8 Induced polarization survey	47
2.3.9 Comparisons between all ground	
geophysical methods	49
2.3.10 Appropriate integrated methods for a specific	
mineral deposit	49
mmetar deposit	
Chapter 3 Interpretation of Geophysical Data for Regional Geology	53
3.1 Interpretation techniques for airborne geophysical data	53
3.1.1 Interpretation techniques for aeromagnetic data	53
3.1.1.1 Intensity contrast	53
3.1.1.2 Time series analysis and enhancement	59
3.1.1.3 Modelling	68
3.1.2 Interpretation techniques for airborne	
radiometric data	78
3.1.2.1 Intensity contrast	84
3.1.2.2 Cooking technique	86
3.1.3 Interpretation techniques for helicopter-borne	
	93
electromagnetic data 3.1.3.1 Amplitude classification	93
3.1.3.2 Magnetic associated anomaly	96
	96
3.1.4 Correlation using integrated data	99
3.2 Interpretation for regional geological framework	99
3.2.1 Regional framework of the northern part	99
3.2.2 Regional framework of the central part	102
3.2.3 Regional framework of the southern part	105
3.3 Tectonic implications	103
To a will Mineral Denogit Type	109
Chapter 4 Interpretation Emphasis on Mineral Deposit Type	109
4.1 Types of mineral deposit	107
4.1.1 Mineral deposits related to the Earth's	109
interior geological processes	109
4.1.2 Mineral deposits related to the Earth's	113
surface geological processes	
4.2 Interpretation techniques	123

4.2.1 Geophysical technique for magmatic	
	123
4.2.2 Geophysical technique for metasomatic	
mineral deposits	125
4.2.3 Geophysical technique for alteration	
product mineral deposits	127
4.2.4 Geophysical technique for residual	
mineral deposits	127
4.2.5 Geophysical technique for sedimentary	
mineral deposits	131
4.2.6 Geophysical technique for metamorphic	
mineral deposits	131
4.2.7 Geophysical technique for oxidized	
mineral deposits	133
Chapter 5 Mineralization Related to the Nan-Uttaradit	
Suture Zone and Its Evaluation	139
5.1 Pre-collision mineralization	139
5.1.1 Chromite	139
5.1.2 Chrysotile asbestos	143
5.1.3 Talc	146
5.2 Post-collision mineralization	149
5.2.1 Gold	149
5.2.2 Illite	151
5.2.3 Graphite	155
5.2.4 Lateritic nickel	160
5.2.5 Nickel chrome iron	164
5.2.6 Dimension stone and construction material	167
5.2.7 Other mineral deposits	174
5.2.7.1 Copper	174
5.2.7.2 Gypsum	176
5.2.7.3 Magnesite	178
	1770
Chapter 6 Proposed Mineral Potential Area	179
6.1 Mineral potential areas	179
6.1.1 Chromite deposit	179
6.1.2 Talc deposit	181
6.1.3 Lateritic nickel deposit	185
6.1.4 Graphite deposit	188
6.1.5 Copper deposit	188
6.1.6 Gold denosit	19

6.1.7 Illite deposit	191
6.1.8 Nickel chrome iron deposit	195
6.1.9 Construction material deposit	195
6.2 Characteristic of mineral potential area	198
6.3 Proposed potential area	199
6.3.1 Outline of potential areas in the northern part	199
6.3.2 Outline of potential areas in the central part	202
6.3.3 Outline of potential areas in the southern part	202
Chapter 7 Conclusions	206
7.1 Tectonic	206
7.2 Regional geology	207
7.3 Economic geology	208
7.4 Proposed working procedure	210
7.4 Hoposed Working procedure	
References	213
References	
Appendix 1	223
Appendix 1	
Curriculum Vitae	228
Currentum vitae	

List of Tables

Tabl	le 🛇	page
1.1	List of the 23 topographic map sheets.	3
1.2	Legend and description of geological units.	13
2.1	Airborne geophysical surveys in Thailand.	21
2.2	Geophysical system used in this study showing capability and limitation.	51
2.3	Geophysical system assigned to mineral deposits in the study area.	52
6.1	Correlation of mineral potential area and geophysical data.	198

List of Figures

Figur	re	page
1.1	Map of the study area and its coverage.	4
1.2	Map showing conservation forest in the study area.	6
1.3	Map showing watershed classification in the study area.	7
1.4	Geological map of the study area.	9
1.5	Geological map of the northern part of the study area.	10
1.6	Geological map of the central part of the study area.	11
1.7	Geological map of the southern part of the study area.	12
1.8	Map showing mineral occurrences in the study area.	16
1.9	Mineral resources map of the study area.	17
1.10	Mineral potential map of the study area.	18
2.1	Area flown by airborne survey A with specified flight altitude.	23
2.2	Aeromagnetic data (residual field) of the study area.	24
2.3	Area flown by airborne survey B and C with specified traverse line spacing.	25
2.4	Airborne radiometric (total count) data of the study area.	26
2.5	Airborne radiometric (potassium) data of the study area.	27
2.6	Airborne radiometric (uranium) data of the study area.	28
2.7	Airborne radiometric (thorium) data of the study area.	29
2.8	Airborne radiometric (ternary) data of the study area.	30

2.9	Five potential areas flown by helicopter-borne electromagnetic with specified traverse line direction.	32
2.10	Selected stacked profile of a helicopter-borne electromagnetic data of the study area.	33
2.11	Map showing classified HEM anomalies using conductance and inphase characters.	34
2.12	The proton magnetometer.	37
2.13	The horizontal loop electromagnetic system.	39
2.14	VLF stations and their frequencies around the world.	40
2.15	The VLF electromagnetic unit.	42
2.16	The terrain conductivity meter system.	43
2.17	The electromagnetic configuration.	44
2.18	The pulse electromagnetic (PEM) system.	46
2.19	The resistivity meter.	48
2.20	The induced polarization meter.	50
3.1	Aeromagnetic data showing a circular body anomaly.	55
3.2	Aeromagnetic data showing a simple sheet anomaly.	56
3.3	Aeromagnetic data showing a complex zone anomaly.	57
3.4	Aeromagnetic data showing a dislocation feature.	58
3.5	Aeromagnetic data showing a superficial layer.	60
3.6	Aeromagnetic data enhanced by upward continuation.	62
3.7	Aeromagnetic data enhanced by various techniques.	64

3.8	Correlation of analytic signal of aeromagnetic data and geological map of the northern part.	65
3.9	Correlation of analytic signal of aeromagnetic data and geological map of the central part.	66
3.10	Correlation of analytic signal of aeromagnetic data and geological map of the southern part.	67
3.11	Map showing the five proposed aeromagnetic modelling profiles.	69
3.12	Anomalous magnetic profiles over a simple magnetic body.	71
3.13	Aeromagnetic modelling for Line A.	73
3.14	Aeromagnetic modelling for Line A part II.	74
3.15	Aeromagnetic modelling for Line B.	75
3.16	Aeromagnetic modelling for Line B part II.	76
3.17	Aeromagnetic modelling for Line C.	77
3.18	Aeromagnetic modelling for Line D.	79
3.19	Aeromagnetic modelling for Line D part II.	80
3.20	Aeromagnetic modelling for Line E.	81
3.21	Aeromagnetic modelling for Line E part II.	82
3.22	Airborne radiometric data of the study area.	85
3.23	Airborne radiometric data enhanced by cooking technique.	87
3.23	a Airborne radiometric data enhanced by cooking technique. (total count)	88

3.23t	Airborne radiometric data enhanced by cooking technique. (uranium and thorium)	89
3.230	Airborne radiometric data enhanced by cooking technique. (thorium and potassium)	90
3.230	d Airborne radiometric data enhanced by cooking technique. (potassium and uranium)	91
3.24	Correlation of radiometric (potassium) anomalous areas (a) and geology of the northern part (b).	92
3.25	Correlation of radiometric (potassium) anomalous areas (a) and geology of the central part (b).	94
3.26	Correlation of radiometric (potassium) anomalous areas (a) and geology of the southern part (b).	95
3.27	Helicopter-borne electromagnetic stacked profile over conductors.	97
3.28	Helicopter-borne electromagnetic stacked profile over magnetic associated conductors.	98
3.29	Regional geology (b) correlated with airborne geophysical data (a) in the northern part.	100
3.30	Regional geology (b) correlated with airborne geophysical data (a) in the central part.	101
3.31	Regional geology (b) correlated with airborne geophysical data (a) in the southern part.	103
3.32	Tectonic framework of the study area interpreted from airborne geophysical data interpretation.	104
3.33	Map showing a series of mafic-ultramafic blocks north of the Sirikit dam.	107
3.34	Map showing HEM stacked profiles over the Khao Yai granite.	108

4.1	Chromite ores found in the study area.	110
4.2	Pyrrhotite ores found in the study area.	111
4.3	Geology of the pyrrhotite deposit.	112
4.4	Chrysotile asbestos found in the study area.	114
4.5	Doi Puk Champeng where actinolite is found in the study area.	115
4.6	Various rock types found in Khao Khee Nok area.	116
4.7	Talc found in the study area.	117
4.8	Alteration product of the volcanic rock (illite) found north of Uttaradit.	118
4.9	Lateritic nickel (garnierite) found in Doi Kaew area.	120
4.10	Gypsum found in Nam Pat and Fak Tha Districts of Uttaradit.	121
4.11	Limestone quarry and marble in the study area.	122
4.12	Limonite (nickel chrome iron) found in the study area.	124
4.13	Ground magnetic survey result over the chromite deposit.	126
4.14	VLF electromagnetic survey result over the illite deposit.	128
4.15	Horizontal loop electromagnetic survey result over the illite deposit.	129
4.16	Terrain conductivity measurement result over the illite deposit.	130
4.17	Horizontal loop electromagnetic survey result over the graphite deposit.	132
4.18	Ground magnetic survey result over the talc deposit.	134

4.19	Ground electromagnetic survey result over the talc deposit.	135
4.20	Ground electromagnetic survey result over the asbestos deposit.	136
4.21	Ground magnetic survey result over the actinolite deposit.	137
4.22	Geophysical survey result over the nickel chrome iron deposit.	138
5.1	Selected area in Ban Huai Phai for chromite evaluation using geophysical survey.	141
5.2	Potential area of chromite in the selected area.	142
5.3	Selected area in Nam Sing for asbastos evaluation. using geophysical survey	144
5.4	Potential area of asbestos in the selected area.	145
5.5	Selected area in Pak Huai Chalong for talc evaluation using geophysical survey.	147
5.6	Ground magnetic and electromagnetic surveys over talc selected area.	148
5.7	Potential area of talc in the selected area.	150
5.8	The various rock types in Ban Nam Phang area.	152
5.9	Selected area in Ban Nam Phang for gold evaluation using geophysical survey.	153
5.10	Potential area of gold in the selected area.	154
5.11	Selected area for illite evaluation using geophysical survey.	156
5.12	Ground electromagnetic surveys over illite selected area.	157
5,13	Potential area of illite in the selected area.	158

5.14	Potential area of mineral deposit related to hydrothermal alteration in Huai Yuak.	159
5.15	Selected area in Khao Khee Nok for graphite evaluation using geophysical survey.	161
5.16	Ground electromagnetic surveys over graphite selected area.	162
5.17	Induced polarization survey results in Khao Khee Nok area.	163
5.18	Selected area in Doi Kaew for lateritic nickel evaluation using geophysical survey.	165
5.19	Potential area of lateritic nickel in the selected area.	166
5.20	Selected area in Ban Nam Phi for nickel chrome iron evaluation using geophysical survey.	168
5.21	Potential area of nickel chrome iron in the selected area.	169
5.22	Selected area in Ban Pha Tung for dimension stone evaluation using geophysical survey.	170
5.23	The construction materials in Ban Rai Huai Phi.	171
5.24	Selected area in Ban Rai Huai Phi for construction material evaluation using geophysical survey.	172
5.25	Potential area of construction material in Ban Rai Huai Phi.	173
5.26	The mineral and rock found in Huai Yuak.	175
5.27	The mineral and rock found west of Nan.	177
6.1	Proposed chromite potential area.	180
6.2	Relationship between HEM anomalies and chromite deposit in Ban Ngom Tham.	182
6.3	Relationship between HEM anomalies and chromite deposit west of Ban Huai Lao.	183

6.4	Proposed talc potential area.	184
6.5	Proposed actinolite potential area.	186
6.6	Area of lateritic nickel in Doi Kaew of Nan.	187
6.7	Proposed graphite potential area.	189
6.8	Proposed copper potential area.	190
6.9	Relationship between potassium anomaly, lineament and granitic rock.	192
6.10	Proposed gold potential area.	193
6.11	Proposed illite potential area.	194
6.12	Proposed nickel chrome iron potential area.	196
6.13	Proposed construction material potential area.	197
6.14	Schematic model for mineral deposit location found in the NUS zone.	200
6.15	Mineral potential areas in the northern part.	201
6.16	Mineral potential areas in the central part.	203
6.17	Mineral potential areas in the southern part.	204