Chapter 5

Game Design

In this chapter the prototype business is simulated to a game. The study uses object-
oriented analysis and design (OOAD) to extract the problem domain. To make
the design more understandable, Unified Modelling Language (UML) notations are

used to visualise the structure, objects, relations and processes of the gare.

5.1 Game Specifications

The game is a strategic-oriented business simulation game, which designed as a
helping tool for an instructor in strategic management course. The players could be
anyone who would like to practice strategic management sl;ill. The game can host 5
users simultaneously per one session excludes a facilitator. It runs on any computer
platform and operating system that support Java Runtime Environment(JRE).

The uses of the system are divided in to two groups, a facilitator and a player.

Their roles are described as follows:

5.1.1 Facilitator

A facilitator is a main user who controls the number of system users, assigns game
environments.

As illustrated in a use case diagram, a facilitator has the following tasks:

e create a player - in order to play the game, anyone who interested in playing

the game have to as a facilitator to create a player account for them.

check lor repealing use

w=exlend>>

create user
dalele user

vigw player inla

raset system valyss

Figure 5.1: Facilitator Use Case

1acilitator

e delete a player - a facilitator is responsible for removing an obsolete player.
e view player information - a facilitator may view all players status.

e reset system values - a facilitator may reset the game values to default values

when begin a new game session.

Note that: a facilitator need to login before performing any task.

5.1.2 Player

A player acts as an owner a business unit competing in a market, They must do
various strategic management activities that make their business survive and make
profit from the market.

As illustrated in a use case diagram, a player may do this foliowing tasks:

e create a new company - a player must firstly create a company in order to run

the business.

e design product - in this process, a player need to design their products that
will be sold in the market. A player needs to set up all products properties

and ingredients.

» produce product- after a design process, a player may submit a design into

production.

design producl }
produce product

~ buy researched info

player

viaw researched info

<ontrol employee number

send employes 1o training
inveslin R&D
design promatian method

creale new company

Figure 5.2: Player Use Case

set product price - a player can freely setup their product price according to

their cost and pricing strategy.

view basic information - there is a set of basic reports that a player can view
without any cost. A player gets an industrial information from this set of

reports.

buy researched information - apart from all basic information, a player may
buy a specific report that suit their need. A research contains an information

that may help a player to decide or plan their strategy.

view researched information - a player is able to view all rescarched that they

bought during a playing session.

control employee number - a player need to control an employee number in
their company. They may employ more employee or design to down size
their organisation. There are two types of employee which will be described

later.

» send employee to training - there are human development programmes which

a player may send their employee into such training.

e invest in R&D - a player may decided to do a research and development

programme which helps to improve a company performance.,

o design promotion method - a player may setup promotion to boost their sales.

Note that: a player need to login before performing any task.

5.2 Class Design

After examining use case diagrams, facilitator roles and player roles have been
defined. The diagrams also show the interaction between people and a system. The
next step is to design all classes that comprise a system.

The study begins with the overall picture which shows the relationship among
each class. Then the each class is being described its purpose, properties, and meth-

ods.

50

Buywel § a0y Buuezsepes
e uafe et B SUSAIM SRSPITID
Guines |
uonowoI
b
0 HRISEIO 2U0JSA[RG
v
aedodwa
yaeasagesvadagy YBRSIHISINIG UDIBASIHPUBLIAQIBWILSHY) #
it
dnias
unoooy .0
AV
sey
ad
. sy o aaud 18l
uoday yeesey KoLieau|
* Y T o P s ve
apap aeah ©
0 p
Aurdwen
Gjui 196 ..

wabypoday By =] Byuibo JUEL T T -0 o ==y -

_v.; esuadq

dag: ki
5 i PR e
0
wablywe)sig

JELT o

#eIey
waouo)

0 seuod)
[enpwpol

AYAYARN

Wi L aingue-|

puewog
sawejsna

Figure 5.3: Overall Class Diagram

51 T

5.2.1 User Class

There are two types of user; a facilitator and a player. Each type of user has distinct

roles as previously described by use case diagram. In this section the user class is

closely examined.

User

(from <>)

#id 1 String

#password : Siring

#userhame : String

#firstName : String

#lastName : String

+getia} : String

+setld(id:String)

+getUserNamed) : String
+setUserName{userName:String)

+yetFirstName() : String

+setFirstName{firstName:String) Player
+getLastNamef) : String {from <=)
+setLastName(lastName:String) <}— -companyName : String

+login(} : Bealean +setCompanyiName{name:String)
+logoull) : Boolean +getCempanyName() : String

+getPassword() : String

+selPassword{_passward:String)

Facilitator

{from <>}

+createPlayer(player:Player) : boolean
+deletePlayer(id:String) : boolean
+setUserPassword{user_Id:Siring, password:String}

Figure 5.4: User Class Diagram

User Properties and Methods Summary
e id: ID holds user identification number. This number is unique for each user.
e userName : A user name assigned by a facilitator.
¢ password : User password that used to login to the system.

o firstName : User’s first name.

52

¢ lastName : User’s last name.

e getld : An accessor methc;d that returns user identification number.
¢ setld : An accessor method that sets user identification number.

o getUserName : An accessor method that returns user name.

e setUserName : An accessor method that sets user name.

o getFirstName : An accessor method that returns user’s first name.
e setFirstName : An accessor method that sets user’s first name.

¢ getLastName : An accessor method that returns user’s last name.
e setLastName : An accessor method that sets user’s last name.

s getPassword : An accessor method that returns user’s password.
e setPassword : An accessor method that sets user’s password.

¢ login : A method that logs user into a system.

logout : A method that logs user out off a system.

Facilitator Properties and Methods Summary

A facilitator class is derived from a user class. It has some methods that only facil-

itator can perform:
o createPlayer : A method that creates a new user.
e deletePlayer : A method that removes a user.

o setUserPassword : A method that set a user password.

53

Player Properties and Methods Summary

A player class is another class that aiso derived from a user class. It properties and

methods are:

¢ companyName : A player’s company name.

e setCompanyName : An accessor method that sets a company name.

o getCompanyName : An accessor method that returns a company name.,

5.2.2 Product Class

Product

-id : String

-name : String
-price : double
-cost 1 double
-material :int
-package : Package
-design : double

Package

-box rint
-bubble : bootean

+getid() : String
+setid(id:String)

+getMame(} : String
+setName(name:String)
+getPricef) : doubla
+satPrice(price:double)
+getCost() : Double
HistProduct()

+getMaterial() : int
+setMaterial{_material:int)
+gatPackage() : Package
+setPackage({_package:Package)
+getDasign() : double
+setDesign{_design:double)

+getBox{) : int
+setBox({_box:int)

+isBubble() : boolean
+setBubble(_bubbla:baatean)

Figure 5.5: Product Class Diagram

Product Properties and Methods Summary

e id : A product identification number.

e name : A product name.

price : A product price set by a player.

cost : A product cost which automatically calculated from product specifica-

tion.
material : A material that a product is made from; Terra cotta or Stone ware.
package : A product package properties.

design : A design quality of a product. This variable is automatically adjusted

based on employee efficiency and R&D irvestment levels.

awareness : Customer brand awareness score. The higher score means there

are higher chance that customer will buy the product.

getld : An accessor method that returns product identification number.
setld : An accessor method that sets product identification number.
getName : An accessor method that returns product name.

setName : An accessor method that sets product name.

getPrice : An accessor method that returns product price.

setPrice : An accessor method that sets product price.

getCost : An accessor method that returns pI‘Od!—.ICt cost.

setCost : An accessor method that sets product cost.

getMaterial : An accessor method that gets material that product is made

from.
setMaterial : An accessor method that sets product material.

getPackage : An accessor method that calls Package Class to return package

properties.

setPackage : An accessor method that calls Package Class to set package

properties.

55 o o

getDesign : An accessor method that returns product design score.

setDesign : An accessor method that sets product design score.

getAwareness : An accessor method that returns customer brand awareness.

setAwareness : An accessor method that seis customer brand awareness.

Package Properties and Methods Summary

e box : A corrugated box ply values.

¢ bubble : A toggled value whether a product is wrapped by air bubble package

or not.
¢ getBox : An accessor class that return the number of ply of a box.
e setBox : An accessor class that set the number of ply of a box.

e isBubble : A methed that examine a product packaging whether it has an air

bubble or not.

¢ setBubble : An accessor method that toggle a value of air bubble wrap.

5.2.3 Customer Class and Demand Class

A customer class represents customers in reality. The-main 6bjective of this class is
to generate demands for the market.

A customer class is as follows:
Customer Properties and Methods Summary

e type : ‘A classified customer type: Individual, Importer, or Retailer.

¢ demand : Demand for each type of customer generated by Demand Class.

level : A customer level: lower class, middle class, or upper class.

floor : The lowest product score that a customer can accept.

ceiling : The highest product score that a customer can accept.

56

Customer
#type @ int
#tdemand : Demand
#level :int
#floor : int Demand
#eeiling :int ~dermand : double
+getType() : int ks -ranciomFactor : ini
+setType(_type:in) -baseDemand : double
+getDemand() : Demand -generateDemand(}
+getlevel() : int ' +getDemand() : Double
+setlevel{_tevelint) +getRandomFactor() : int
+getFlaor(y :int +setRandomFactor_randemFactor:int)
+setFloor{_floor:int) +getBasebemand() : double
+getCeiling() : int +setBaseDemand{_baseDemand:double)

+setCeiling{_ceiting:int)

individual Importer Retailer

Figure 5.6: Customer Ciass Diagram

getType : An accessor method that returns customer type.
setType : An accessor method that set a customer type.

getDemand : An accessor method that returns customer demand generated

by Demand Class.

getLevel : An accessor method that returns customer level.
setLevel : An accessor method that sets a customer level.
getFloor : An accessor method that returns floor score.
setFloor : An accessor method that sets floor score.
getCeiling : An accessor method that returns ceiling score.

setCeiling : An accessor method that sets ceiling score.

57

Demand Properties and Methods Summary

s demand : A customer demand.

e randomFactor : A demand random factor.

e baseDemand : A customer base demand.

¢ generateDemand : A private method that generates customer demand.

e getDemand : An accessor method that returns customer demand.

e setDemand : An accessor method that sets customer demand.

o getRandomFactor : An accessor method that returns demand random factor.
¢ setRandomFactor : An accessor method that sets demand random factor.

o getBaseDemand : An accessor method that returns base demand.

¢ setBaseDemand : An accessor method that sets base demand.

5.24 Company Class, Inventory Class, Employee Class, Expense

Class, and Account Class

The following diagram shows a company class and other related classes:

Company Properties and Methods Sumamary

¢ name : A company name which is set to be the same as a user name as a

default.
¢ owner : A player object that owns the company.
e product : A product hash table that hold list of product objects with key index.
e expense : A company expense object.
e account : A company account object.

¢ inventory : A company inventory object.

58

Com
ormpany i‘ Expense
-name : String

oL AixCost : double
-ow;er. ayer \ -InvenCost : double
-prochuct - Hashtable ArainCost : double
-expense : Expense . _rdGost : double
-account : A lccuum .researchGost : double
-inw + Invento
n e:]tory' "SE“ Y -promationSost : double
+gelNameU. m"gsrl +getFixCast{) : double
+set Oe;me(_na:e- iring) +getinvenCosl() : couble
+gelcwner(] : aye;l +getinvenGCost{_invenCost:double)
owner:|
+setOwnert_owner:Player) — 4getTrainGost)) : doubla
+satTrainGost(_trainCost:double)
+getRdCost) double
Inventory _ Emplayes 4‘ +5etRCost]_rdCost:double)
-space : double #number . Int +getResearchCost() : double
_unitCast : double #efficlentcy : double +setResearchCos(_researchCost:double)
-preductUnit :int #isalary : double +ge!PromotanGost() : double
+getSpace() : doutle +gethusber() : int +setPromotionCaost{_promotionCost:double)
ssetSpace(_space:double) +setNumbet(_numberiint)
sgetProductUniy) = int +getEfficiency() : doutle Account
+setProductUnit_productUniting) +seiEfficiency{_efficlentcy:double}
-palance : double
+getunitCost() : double +getSalary() : double
-overDraft : double
+getUnkCost(_uniiCost:double) +salSalany(_salary:doubla)
- double +gatBalance() : double
- +deposit(amount.double)
+withdraw{amount:double)
+getCverDrafi() © double
+selOverDrai(_overDraft:double)

Figure 5.7: Company & Related Classes Diagram

. getName . An accessor method that returns a company’s name.
e setName : An accessor method that set a company’s name.
o getOwner : An accessor method that returns an owner of a company object.

e setOwner : An accessor method that set an owner of a company.

Inventory Properties and Methods Summary

¢ space : Warchouse space in unjt. The default value when company starts is

1,500 units.

e unitCost : Cost per month for each product unit stored in a warehouse.
e productUnit : It shows how many product units are in a warehouse.
e getSpace : An accessor method that returns a warehouse capacity.

e setSpace : An accessor method that sets a warehouse capacity.

59

e getProductUnit : An accessor method that returns product quantity stored in

a warehouse.

e setProductUnit : An accessor method that set product quantity stored in a

warehouse.
o getUnitCost : An accessor method that returns an inventory cost for each unit.
e setUnitCost : An accessor method that set an inventory cost for each unit.

o getAllCost : A method that returns cost of inventory : UNIT_COST x PROD-
UCT_UNIT.

Employee Properties and Methods Summary

e number : A total employee number.

e cfficiency : A number that indicates an efficiency level of employee.
e salary : Salary amount for an employee.

e getNumber : An accessor method that returns an employee number.
e setNumber : An accessor method that sets an employee number.

® getEfﬁciency : An‘ accessor method that returns cfﬁciency factor.

¢ setEfficiency : An accessor method that set cfﬁ;:iency factor.

e getSalary : An accessor method that returns salary of an employee.

e setSalary : An accessor method that set salary of an employee.

Expense Properties and Methods Summary

e fixCost : Fix cost values. Fix cost is comprise of: salary, depreciation, facility
expense (electricity, running water, etc), inventory management. This value

is fix at 500,000 Baht per month for every company.

T 60

o invenCost : [nventory cost. Each set of product set inventory cost is 10
Baht/month. The cost may vary depends on the number of product sets stored

in a warehouse.
o trainCost : Total training cost for each company.
e rdCost : Total R&D cost.
e researchCost : Total research expense.
¢ promotionCost : Total promotion expense.
e getFixCost : An accessor method that returns fix cost value.
e getlnvenCost : An accessor method that returns inventory cost value.
e setlnvenCost : An accessor method that sets inventory cost.
e getTrainCost : An accessor method that returns training cost value.
¢ setTrainCost : An accessor method that sets training cost.
¢ getRdCost : An accessor method that returns R&D cost.
e setRdCost : An accessor method that sets R&D cost.
e getResearchCost : An accessor method thét returns report expense.
o setResearchCost : An accessor method that sets report expense.
) getPromotionCosf : An accessor method that returns promotion expense.

¢ setPromotionCost : An accessor method that sets promotion expense.

Account Properties and Methods Summary

* balance : Total amount of cash on hand. However, the highest amount that a

company has is: BALANCE + OVER_DRAFT,
e overDraft : Fotal amount of over draft allowed.

e getBalance : An accessor method that returns balance amount.

61

deposit : A method that deposit the amount of money into an account.

withdraw : A method that withdraw the amount of many out of an account.

getOverDraft : An accessor method that returns an over draft amount.

setOverDraft : An accessor method that set an over draft amount.

5.2.5 Promotion Class

Promotion

#cost : double
#effectiveFactor : flpat

+getCost() : double
+setCost{_cost:double)
+getEftectiveFactor) : float

+setEffectiveFactor(_effectiveFactorfoal)

1

Grandsale Website CustomerRelation Redsacoration

Figure 5.8: Promotion Class Diagram

Promotion Properties and Methods Surnmary

¢ cost : Cost of each promotion type.

effectiveFactor : An effective factor value which affects product score.

getCost : An accessor method that returns cost of each promotion.

setCost : An accessor method that sets cost of each promotion.

getEffectiveFactor : An accessor method that returns an effective factor value.

setEffectiveFactor : An accessor method that set an effective factor value.

62

5.2,6 Training Class

Training

-cost : double

-eftectiveFactor : double

-duration : int

+getCost!) : double

+setCost{_cost:double)

+getEffectiveFactor() : double
+selEffectiveFactor(_effectiveFactor:.double)

+getDuration() ; int

+setDuration(_duration:int)

T T

SalesTraining CtficeTraining

Figure 5.9: Training Class Diagram

Training Properties and Methods Summary

¢ cost : Cost of each training type.

o effectiveFactor : An effective factor value of each training.
o duration : Training duration (in month).

e getCost : An accessor method that returns a training cost.

¢ setCost : An accessor method that sets a training cost.

e getEffiveFactor : An accessor method that returns an effective factor value.

o setEffectiveFactor : An accessor method that set an effective factor value.
o getDuration : An accessor method that returns a training duration.

e setDuration : An accessor method that sets a training duration.

63

3.2.7 R&D Class

RD

-cost : double

-effectiveFactor : double

-duration :int

+getCost(} : double

+setCost{_cost:double)
+getEftectiveFactor() : double
+setEffectiveFactor(,_effectiveFactor.double)
+getDuration{} : int
+setDuratien(__duration:int)

Figure 5.10: R&D Class Diagram

R&D Properties and Methods Summary

e cost : Cost of each training type.

e effectiveFactor : An effective factor value of each training.

e duration : Training duration (in month).

» getCost : An accessor method that returns a training cost.

¢ setCost: An accessor method that sets a training cost.

o getEffiveFactor : An accessor method that returns an effective factor value.
e setEffectiveFactor : An accessor method that set an effective factor value.,
¢ getDuration : An accessor method that returns a training duration.

e setDuration : An accessor method that sets a training duration.

64

5.2.8 Report Class

At the end of each month, a company is getting a summary report which contains

the following information:

Average product quality.

Average price.

Inventory capacity.

Total expense.

Cash on hand.

Report

-AvgScore ; int
-AvgPrice : double
-lnvenCap : Inventory
-expense : Expense
-account : Account

+generate()

+gelAvgScorel) (int
+setAvgScore(_AvgScore:int)
+getAvgPrice() : double
+setAvgPrice{_AvgPrice:double)

Figure 5.11: Report Class Diagram

Report Properties and Methods Summary

e avgScore : An average product score from every company.

avgPrice : Product average price.

invenCap : An inventory capacity of a company.

expense : An expense object that reports company expense.

account : An account object that reports a company financial status.

65

generate © A method that generate a whole report.

getAvgScore : An accessor method that returns an average product score.

setAvgScore : An accessor method that sets an average product score.

getAvgPrice : An accessor method that returns a product average price.

setAvgPrice : An accessor method that sets a product average price.

5.2,9 System Agent Class

A System Agent Class is a class that acts a work horse for overall information
collector. The functionality of a system agent is implemented in only one method,

doAgentAction. There are 5 types of system agents as follows:

Research Agent: A research agent is responsible for collecting data needed to re-
port in a research ie., each product price, customer demand from the “cus-

tomer matrix’ and an average industry R&D expense.

Report Agent: A report agent is responsible for summing up each company data

and directly reports the information back to a company.

Expense Agent: An expense agent is responsible for collecting expense data from

each company and submits the results to report agent.

Login Agent: An login agent keeps track of active users in a system. It also has to

register a user into a system list.

Timer Agent: A timer agent acts as a system clock. It generates a signal at the end

of each interval.

System Agent Properties and Methods Summary

e name : A system agent name.
e setName : An accessor method that sets a system agent name.

o getName : An accessor method that returns a system agent name.

66

SystemAgent

" |+name : String

+setName{name:)
+getName() : String
+doAgerdAction()
+listActionResult()

TimerAgent
RessarchAgent ReportAgent ExpenseAgent
-interval :int
+getintenal() < int
+setinterval(_intervalint)
LoginAgent

-userlist : Hashtable

+login(id:String, userName:String, password:String)
+logout{id:String)

-ascdUserObject{iuser:User)
-removeUserObject(id:String)

+listUser()

Figure 5.12: System Agent Class Diagram

e doAgent: A method that implements a agent functionality.

e listActionResult : A method that returns a result from a system agent.

LoginAgent Properties and Methods Summary

e userlist: A hash table that holds user objects. '

login : A method that logins a user into a system.

logout : A method that log outs a user off a system.

addUserObject : A private method that add user into a user list.

removeUserObject : A private method that remove user out off a user list.

listUser : A method that list all user in a user list.

TimerAgent Properties and Methods Summary

e interval : Timer interval in second.

67

e getintecval : An accessor method that returns an interval value,

» setlnterval : An accessor method that sets an interval value.

5.2.10 Research Class

A research system agent provide few types of researches which a company can
buy. Therefore, a company can use such information to make decision or create a

suitable strategy to compete in an industry. A research class design is as follows:

Research

#name : String
#oost cint

+gethame(} ;: String
+setName{_name:String)
+getCost() : int
+se1Cost{_cost:int)

+doAction()
CustomerDemandResearch PriceListResearch RDExpenseResearch
-customer : Gustomer -product : Froduct -expense : Expense

Figure 5.13: Research Class Diagram

Research Properties and Methods Summary

e name : A research name

cost : A research cost

getName : An accessor method that returns a research name.

sctName : An accessor method that sets a research name.

getCost : An accessor method that returns a research cost.

setCost : An accessor method that sets a research cost.

68 S

* doAction : A method that get information from customer object, product

object, and expense object.

69 e

5.3 Persistent Data Design

All classes that motioned previously do all game business logics. There is another
type class that does an objecf data persistence. In other words, this kind of class is
responsible for writing and retrieving information from a database back-end to keep
object states. The study uses database adapter classes to handle data persistence for

the game. The overall class view is as follows:

DBAdapter
DBTransaction D 4 DBFormular
+store(}
+retrievel)
+delete()
T |
DBUser DBFroduct 0BCustomer DBCompany DBAccount DBExpense

Figure 5.14: Database L ogic Classes

All sub classes implement only three methods:
e store - A method that writes data into database back-end.
e retrieve - A method that retrieve data frorn database back-end.

e delete - A method that deletes .data from database back-end.

70

The following data tables are used to store persistence data:

User Table

A user table stores system users information

User Table
id Char(10) Primary Key | Index
firstName | VarChar(100) First name
lastName | VarChar(100) Last name
password | Char(20} Password User password
type VarChar(15) User type

Table 5.1: User Table

Company Table

A company table stores company information and the owner(user) of a company.

Company Table

name | Char(20) Company name

owner | Char(10) { Primary Key | User ID

Table 5.2: Company Table

71 T

Employee

An employee table store employee numbers and their efficiency of a company.

Employee Table
id Char(10) | Primary Key | User ID
saleNumber Integer Number of salesperson
staffNumber | Integer Number of staff
saleEfficiency | Float Sale efficiency factor
staffEfficiency | Float Staff efficiency factor

Table 5.3: Company Table

72

Session Table

A session table keeps track of a system users to prevent a double login.

Session Table

counter | Integer | Auto Increment, Primary Key | Index

id Char{10) User ID
inTire | Date Login time
outTime | Date Logout time

Table 5.4: Session Table

Product Table

A product table stores a product information including its quality factors and pack-

age quality.
Product Table
counter | Int Auto Increment, Primary Key | Index
id Char{10) Product ID
ownerld | Char(10) User ID
name VarChar(50) Product name
price Float Product price
cost Float ' Product cost
material | Integer Meterial used
packBox | Integer : Packaging
bubble | Boolean Air bubble (yes/no)
design Float Product design score
amount | Integer | Product amount

Table 5.5: Product Table

73

Account Table

An account table mainly store a company cash amount.

Account Table
id Char(10) | Primary Key | Index
cash Float Cash on hand
overDraft | Float Overdraft

Table 5.6: Account Table

Customer Demand Table

A customer demand table store demands for each type of customer generated in

each month of a specific year,

Customer _Demand Table

type Integer | Customer type

class Integer | Customer class

demand | Float Customer demand

month | Integer { Month

year Integer | Year

Table 5.7: Customer_Demand Table

74

Sale Transaction Table

A sale transaction table keeps records of sales that happen in each month in a spe-

cific year.
Sale_Transaction Table

counter Integer | Auto Increment, Primary Key | Index
productld | Char{1(} Product ID
price Float Sale price
cost Float Product cost
amount Integer Sale amount
month Integer Month
year Integer Year

Table 5.8: Sale_Transaction Table

75

Formula Table

‘A formula table stores afl factors and system default values. This table acts as a

value pair values storage.

Formula Table
capital Float | Initial cash on hand
overDraft Float Initial overdraft amount

saleEmployee | Integer | Number of salesperson

staffEmployee | Integer | Number of staff

inventory Float | Initial warehouse capacity
random Float | Demand random factor
interval Integer | Timer interval

totalDemand Float Customer total demand

fixCost Flat A company fix cost

rdCost Float Ré&D Cost

rDemand Float Customer demand research cost
rPrice Float | Price list research cost

rRD Float | Average R&D expense research cost
pGS Float | Grand sale promotion cost

pWS Float | Web site cost

pCR - Float | Customer relation cost

pRD Float | Store re-decorate cost

saleTraining | Float | Salesperson training cost (per head)

staffTraining | Float | Staff training cost {per head)

Table 5.9: Formular Table

76

5.4 Game System Architecture

The study uses a client-server architecture to design the game. The necessary com-

ponents needed to deploy the games are:

Client Computer: A client company runs a user interface part. A player uses this

interface to interact with other parts of the game.

JBoss Application Server: JBoss is a J2EE compliance application server. All
enterprise Java beans are deployed onto this server. This includes all business

logic classes and database adapter classes.

PostgreSQL Database Back-End: PostgreSQL is a free database server that used

to store all persistent data.

Swing Client
\ IBoss Application
S

Swing Client
Seiver

PostgreSQL Database
Back—-End

Swing Client

Figure 5.15: Game System Architecture

e . 77 e m

5.5 Game User Interface Examples

Before a player can play the game, they need to login to the system.

™ E : user Login

‘ ehg

CEhos oh b Sk e op o o o)

Figure 5.16: User Login Dialog

78

Main application frame that lets use select an operation from menu systerm.

CE | Player Gul

Figure 5.17: Main Application Space

79

A player may choose to view a report displays a company status.

Figure 5.18: Company Information Report Dialog

80 ’ T

A player can create their product, set up product price, and select a packaging

type.

Figure 5.19: Product Creator Dialog

81

There are 4 types of promotion schemes that a player may launch to increase

their sale volume.

OV E | Grand sale Promotion Dialog -

H

Figure 5.20: Grand Sale Promotion Dialog

5.6 Game Playing Procedures

Game playing procedures are as the following figure:

82

SPUBLIS(] JAWIOISNT) O],

S12p01q YNejy sllery i

SRNpalg 378l 39AEld ¢

Joie|isey X takelg

hat— —

0] 1uag spoday

punoy yxap] ayy,

1o UohEULOU] L],
1250) lorengoeyg ¥ 1adr)g

1 807 -

sayaIeasay Ang - — — — = safopdwy urely,
T
- A
————————

udisagg nporg

Buin(g tedeid v awdod

ATaeng Jrayy

oguegsehegy [T SWAYSE UONOWaL] YouEn
4
Auedwo) mapn Jog senfep
NINBJA(] 195 WASAS v

Auedwory mapn

w1 1fEld v san[eA, Wasks 1esal]
A F

washs v mdo] 1ode(d g J35[) MIN SHIRID JOTEN| DB

130T Jorelpioey|

Playing Procedures

Figure 5.21

10.

11.

12.

13.

14,

15.

83

. A facilitator login a system and create new players.

A player must login first in order to play the game by specifying user name

£

password, and game server.

. After login a user must create a new company in order to start a new business.

All company default values are set when a company is newly started.
A player may plan what market segment should they be in.

A player must design a product to serve customer demands.

- After a product design, a player must create product and specifies its price,

package and volume.

. Atthe end of each month({control by game clock), each product will be matched

to customer demands.
A player gets a sale report from a system.

A play may analyse their status from a company basic information and sale

report in order to provide a plan for next month.

A facilitator also have company performance report for every company. They
may use the information to instruct/advise a player before a next month be-

gins.

During each month, a player may choose to launch a promotion to increase a

sale volume or customer brand awareness.

A player may send employee into training in order to increase employee effi-

ciency.

A player may choose to do a research and development programme that helps

to improve product quality and design.

A player can buy numbers of studied researches. These research helps a
player getting to know customer demand for each segment, industrial stan-

dard, and competitors’ prices.

34

16. After finish a session, user should log out the systems.

' This chapter simulated the prototype business into a game design using object-
orienied system analysis apbroach. All business logic and persistent data logic
classes were visualised using UML notation. Client-server architecture was used to
host the game “Enterprise Java Beans” to promote a network capable concept. At
the end of the chapter, there were few game screens illustrated what a player would

see during a game session. The game playing procedures also explained.

