TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF TABLES	xiv
LIST OF ILLUSTRATIONS	xv
ABBREVIATIONS	xviii
I. INTRODUCTION II. LITERATURE REVIEW	1
A. Dengue virus	4
1. Structure and composition of virion	4
2. Genome structure	4
3. Viral proteins	5
3.1. Viral structural proteins	5
3.2. Viral non-structural proteins	10
4. Synthesis and processing of viral proteins	11
B. Subtilisin-like proprotein convertases	12
1. Members of subtilisin-like proprotein convertase	
family in mammalian	12
2. Structure and function of subtilisin-like proproteins	
convertases	13
3. Biochemical and enzymatic feature of furin	16
4. Target of subtilisin-like proprotein convertase	
in the surface proteins of other viruses	17

			PAGE
III. MATERIAL	S AND METHODS		23
1. <i>E. coli</i>			23
2. Cell line	s		23
3. Recomb	inant plasmids containing	g dengue virus genome	△ 23
4. Oligonu	cleotide primers for PCR	-based site-directed	
mutagene	esis		27
5. PCR-bas	ed site-directed mutagen	esis	31
6. Preparati	on of mutant plasmid		33
6.1	Preparation of plasmid D	NA by	
;	small-scale boiling lysis		34
6.2	Midi-preparation of plass	mid DNA by	
1	the alkaline lysis method		35
7. Nucleotic	de sequence analysis for	confirmation	
of mutat	ed sequence		36
8. Construc	tion of full-length mutan	t cDNA clones	38
9. Generation	on of mutant viruses		41
9. 1	Production of genome-le	ngth capped RNA	
b	y in vitro transcription		41
9. 2	Introduction of capped R	NA transcripts into cells	
	by transfection		41
9.3	Detection of mutant deng	gue viruses	42
	9. 3.1 Dot blot immur	ıoassay	42
	9. 3.2 Reverse transcr	iptase polymerase chain	
	reaction (RT-P	CR)	42
	9.3.3 Virus titration by	y focus immunoassay	45

	PAGE
IV. RESULTS	46
V. DISCUSSION	88
VI. SUMMARY	101
REFERENCES	104
APPENDICES	118
Appendix A. Titration of K204 dengue mutant virus set	119
Appendix B. Titration of R205 dengue mutant virus set	120
Appendix C. Burst size of the K204R dengue mutant virus	121
Appendix D. Burst size of the R205K dengue mutant virus	
(transfection I)	123
Appendix E. Percent of small and large foci	
of K204R mutant virus	124
Appendix F. Percent of small and large foci	
of R205K mutant virus (transfection I)	125
Appendix G. Percent of small and large foci	
of R205K mutant virus (transfection II)	126
Appendix H. Nucleotide sequence analysis at prM-M junction	
of dengue mutant clones by using primer C1204	127
Appendix I. Nucleotide and amino acid sequence around the	
prM-M cleavage site of K204R and R205K viruses	
compare with dengue serotype 2 strain 16681	131
Appendix J. Properties of amino acids	133
Appendix K. Reagents	135
Appendix L. Instruments	144
CURRICULUM VITAE	145

LIST OF TABLES

Table		Page
1. Sequences around the cleavage site of	f precursor protein	ns19
2. Oligodeoxyribonucleotide primers for	r site-directed mu	tagenesis
employed to be changed at amino aci	d residue 204	29
3. Oligodeoxyribonucleotide primers for	site-directed mu	tagenesis
employed to be changed at amino acid	1 residue205	30
4. Parameter of PCR based site-directed	mutagenesis for	change
at residues 204 and 205		32
5. Oligonucleotide primers for polymera	se chain reaction	and
nucleotide sequence analysis		37
6.Oligoribonucleotide primers for reverse	e transcriptase-po	olymerase
chain reaction		44
7. PCR-based mutagenesis of the codons	204 and 205 wit	hin
pBK S1SP6-1547Δ402 Pst I subclone		48
8. Construction of mutant 5'half-genome	es	57
9. Comparison of the dengue K204R and	i R205K mutant v	viruses 82

LIST OF ILLUSTRATIONS

Figure	Page
1. Schematic diagram of the composition of immature	
and mature flaviviruses	7
2. Members of the mammalian family of Subtilisin-like	
proprotein convertase compare with Kex2 (Kexin)	15
3. Three plasmids for the construction of the full-length	
dengue cDNA clone	26
4. Construction of the full-length dengue serotype 2	
strain 16681 cDNA clone	40
5. Nucleotide sequence of the 1.3-kb Pst I fragments (nt 214-1531)	49
6A. Two insertion patterns of the mutant Pst I fragment	
(nt 212 – 1535) within the 5'half-genome	58
6B. Determination of the orientation of the ligated	
mutant Pst I fragment (nt 212-1535) in 5'half-genomes	
by digesting 5'half genomes with by Sph I and EcoR I	59
7. Analysis of mutant 5'half-genomes (pBK S1S6-4497Δ402 Pst I);	
K204 mutation set	60
8. Analysis of mutant 5'half-genomes (pBK S1S6-4497Δ402 Pst I);	
R205 mutation set	61
9. Checking mutant full-length dengue cDNA clones	
(pBK S1SP6-10723 Δ402 Pst I) by restriction enzyme digestion;	
K204 mutation set	63

LIST OF ILLUSTRATIONS

Figure	Page
10. Checking mutant full-length dengue cDNA clones	
(pBK S1SP6-10723 Δ402 Pst I) by restriction enzyme digestion;	
R205 mutation set	64
11. A full-length cDNA clone, pBK S1SP6-10723 Δ 402 Pst I R205S,	
linearized by digesting with Xba I	65
12. Analysis of the capped in vitro transcripts of a mutant	
full-length cDNA clone containing the R205S mutation	
at the prM-M cleavage junction	66
13. Release of K204 mutant dengue virus set following transfection	66
14. Kinetics of virus production following transfection by transcripts	•
of parental dengue strain 16681 (#81.2) into C6/36 cells	70
15 Kinetics of virus production following transfection of five	
different K204 mutant transcripts into C6/36 cells	71
16A. Release of mutant dengue viruses from C6/36 monolayers	
following transfection with five different R205 mutant transcripts	73
16B. Release of R205K mutant dengue virus, set 5 (2),	
from transfected C6/36 monolayers in the second experiment	74
17. Kinetics of virus release into culture media following transfection	
of C6/36 cells with five different R205 mutant transcripts	76
8. Proportion of small and large foci of the K204R mutant virus	
following transfection into C6/36 cells	78
9. Nucleotide sequences surrounding the prM-M cleavage site	
of K204R cDNA and K204R virus as compared with the parent	
cDNA clone	79

LIST OF ILLUSTRATIONS

Figure	Page
20. Proportion of R205K mutant viruses generating small and large	
infected PS foci during 56 days of transfection into C6/36 cells	81
21. Representative foci of the K204R and R205K mutant viruses,	
as observed in infected PS clone D cells following immuno-	
peroxidase staining	83
22. Nucleotide sequence surrounding the prM-M cleavage site	
of K204R cDNA and K204R virus compared with the wild type	86
23. Schematic representation of the substrate binding region	
of the enzyme furin	91
24. Arrangement of E and prM protein on a triangular surface	
of the subviral particle of tick-borne encephalitis virus	100

ABBREVIATIONS

A adenine

Å Angstrom (10⁻¹⁰m)

Ala alanine

Arg arginine

Asp aspartic acid

bp base pair

BSA bovine serum albumin

C cytosine

°C degree celsius

cDNA complementary DNA

C protein capsid protein

CoCl₂ cobalt dichloride

CS conserved RNA sequence

Cys cysteine

DAB 3, 3' diaminobenzidine

DF dengue fever

DHF dengue hemorrhagic fever

dNTP deoxyribonucleoside triphosphate

DEPC diethylpyrocarbonate

dsDNA double-stranded deoxyribonucleotide

DSS dengue shock syndrome

DTT dithiothreitol

E envelope protein

EDTA ethylenediamine tetraacetic acid

EtBr ethidium bromide

ER endoplasmic reticulum

ffu foci forming unit

g gravity

G guanine

hr hour

HEPES N-(2-hydroxyethyl) piperazine-N'-

(2-ethanesulfonic acid)

His histidine

HIV human immunodeficiency virus

Ig immunoglobulin

k kilo (10^3)

 $k_{\rm cat}$ turnover number

K_M Michaelis constant

kb kilobase

kDa kilo-Dalton

KOH potassium hydroxide

LB Luria-Bertani medium

LPC lymphoma prohormone convertase

Lys lysine

M membrane protein

M molar

mAb monoclonal antibody

MESA MOPS-EDTA-Sodium acetate buffer

MgCl₂ magnesium chloride

min minute

mL milliliter

mM millimolar

mole mole

MOPS 3-(N-morpholino)propanesulfonic acid

μ**g** microgram

μ**I** microliter

μ**M** micromolar

NaCl sodium chloride

ng nanogram

nm nanometer

NS non-structural protein

nt nucleotide

PACE pair amino acid convertase enzyme

PBS phosphate buffered saline

PC prohormone convertase

PCR polymerase chain reaction

pmol picomole

poly(A) polyadenylated

prM premembrane protein

RNA ribonucleic acid

RNase ribonuclease

rNTP ribonucleoside triphosphate

rpm revolutions per minute

RT-PCR reverse transcriptase-polymerase chain reaction

SDS sodium dodecyl sulfate

sec second

Ser serine

SPCs subtilisin-like proprotein convertases

T thymine

TAE tris-acetate-EDTA buffer

TE tris-EDTA buffer

TGN trans-Golgi network

Tm melting temperature

Tris-HCl tris-hydrochloride buffer

u unit

UV ultraviolet

Val valine

VC vitellogenin convertase

Vg vitellogenin

(v/v) volume:volume ratio

(w/v) weight:volume ratio