TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT	iv
LIST OF TABLES	xiv
LIST OF ILLUSTRATIONS	xv
ABBREVIATIONS	xxi
Chapter 1 Introduction	1
Chapter 2 Literature Survey	3
2.1 Piezoelectricity	3
2.2 Piezoelectric Applications	8
2.2.1 Hydrophone Applications	9
2.2.2 Biomedical Imaging Application	12
2.3 Single Phase Piezoelectric Materials	16
2.3.1 Ceramic Piezoelectric Materials	16
2.3.1.1 Barium Titanate	17
2.3.1.2 Lead Zirconate Titanate	18
2.3.1.3 Lead Titanate	19
2.3.1.4 Lead Metaniobate	21

		D
		Page
	2.3.2 Polymer Piezoelectric Materials	24
	2.3.2.1 Polyvinylidene Fluoride (PVDF)	24
	2.3.2.2 P(VDF-TrFE) Copolymer	28
2.4	Piezoelecțiic Ceramic-Polymer Composites	29
	2.4.1 Phase Connectivity	31
	2.4.2 Piezocomposites with 3-3 Connectivity	34
	2.4.3 Piezocomposities with 1-3 Connectivity	36
	2.4.4 Piezocomposites with 0-3 Connectivity	39
	2.4.4.1 Poling of 0-3 Composites	42
	2.4.4.2 Composite Processing	
	and Fabrication	45
2.5	Summary	48
2.5	Suilliary	
REFERENCE	s . C	49
Chapter 3	Experimental Methods and Procedures	59
3.1	Processing of Ceramic Powder	59
	3.1.1 The Commercial 40/30 PZT Powder	59
	3.1.2 The Pb($Zr_{0.52}Ti_{0.48}$)O ₃ Mixed Oxide Powder	61
3.2	Processing of Ceramic-Polymer Composites	63
	3.2.1 Conventional Method	63
	3.2.2 Centrifuge Method	64

		Page
3.3	Characterization and Measurement Methods	67
	3.3.1 Particle Size Analysis of PZT Powde	er 67
es established	3.3.1.1 Sedimentograph	67
	3.3.1.2 Scanning Electron Microscopy	7 68
	3.3.1.3 Fourier Analysis	68
	3.3.2 X-Ray Diffraction Analysis	72
3.4	Property Measurement of the Composites	74
	3.4.1 Density Measurement	74
	3.4.2 Polarization of Composite	75
	3.4.3 Dielectric Properties	76
	3.4.4 Piezoelectric Properties	77
	3.4.5 Electromechanical Properties	78
	3.4.6 Acoustic Impedance	82
REFERENCE		85
Chapter 4	Results and Discussions	86
4.1	Powder Characterization	86
	4.1.1 X-Ray Diffraction Results	86
	4.1.2 Determination of the Particle Size	92
	4.1.2.1 Measuring by a Sedimentograp	h 92

		Page
	4.1.2.2 Determination of the X-Ray	
	Line Profile Using the	
	Fourier Method	95
	4.1.2.3 Measuring by Scanning	
	Electron Microscopy	101
4.2	Properties of 0-3 Piezoelectric- Polymer	
	Composites	108
	4.2.1 Density	108
	4.2.2 Scanning Electron Micrographs of	
	Composites	113
	4.2.3 Dielectric Properties	113
	4.2.4 Piezoelectric Properties	126
	4.2.5 Electromechanical Properties	129
	4.2.6 Acoustic Impedance	130
REFERENCE	s ()	134
Chapter 5	Conclusions	136
5.1	Powder Processing and Characterization	136
5.2	Composite Processing and Characterization	137
5.3	Composite Density	138
5.4	Dielectric Properties of Composites	139

		Page
5.5	Piezoelectric Properties of Composites	140
5.6	Electromechanical Properties of Composites	141
5.7	Acoustic Impedance of Composites	141
5.8	Suggestions for future work	142
REFERENCE		144
APPENDIX :	A Fourier Analysis Computer Programming	145
A.1	True Fourier Component Measurement Program	145
A.2	Complete Fourier Analysis of Line Broadening	
	Program	151
A.3	Particle Size and Microstrain Measurement	
	Program	160
A.4	Program to Save Data of Line Profile	163
A. 5	Program to Change Data in Data File	164
APPENDIX I	B X-Ray Diffraction Pattern of PZT Powder	165
B.1	Line Profile of PZT Powder Calcined at	
	Temperature of 400-1300 °C.	165
B.2	XRD Line Profile of Peak (111) of PZT Powder	
	Calcined at Temperature of 400-1300 °C.	175

	Page
APPENDIX C	
APPENDIX C	185
C.1 The Effect of Centrifuging	185
C.2 A Plot of d33 As A Function of Volume	
Percentage of Ceramics.	186
VITA	187

LIST OF TABLES

Tab]	Le S	Page
		. age
2.1	Optimum transducer material properties for	•
	low and high frequency applications.	15
2.2	Electromechanical properties of ceramic	
	piezoelectric materials.	23
4.1	JCPDS powder diffraction file of PZT powder	88
4.2	The average particle sizes of PZT powder	
	measured from SEM.	107
4.3	Density of the 0-3 composites.	109
4.4	Dielectric properties of the composite with	
	different methods.	125
4.5	Piezoelectric properties of the composites.	128
4.6	Showing k_p and Q_m values of the composites.	130
4.7	Physical properties (c_L and K) of the composites.	132

LIST OF ILLUSTRATIONS

Fig	ure	Page
2.1	Schematic representation of piezoelectric	
	response under the electric field E.	7
2.2	Ten different connectivity patterns of	
	diphasic materials.	32
2.3	Schematic diagram of various piezoelectric	
	ceramic-polymer composites.	33
2.4	Schematic diagram of 0-3 ceramic-polymer	
	composite.	40
2.5	Maxwell-Wagner two-layer capacitor.	44
3.1	Schematic diagram of preparing the commercial	
	40/30 PZT powder.	60
3.2	Schematic diagram of preparing of Pb(Zr _{0.52} Ti _{0.48})O ₃	
	mixed oxide powder	62
3.3	Schematic diagram of sample preparation using	
	centrifuge method.	66
3.4	The poling apparatus.	75
3.5	Equivalent circuit of the piezoelectric material.	80

Figu	re	?age
3.6	The frequency profiles of the resonance mode of	
	the piezoelectric material.	81
3.7	The apparatus for echo-shift measurement.	84
4.1	XRD of PZT powder annealed at several temperatures.	90
4.2	XRD pattern of the (100) and (001) peaks of PZT	
	powder annealed at the temperature of 1000 °C,	
	1100 °C, 1125 °C, 1150 °C, 1175 °C and 1200 °C.	91
4.3	Particle size distribution curve of 40/30 PZT	
	powder: a) sieved through mesh number 100 and	
	b) sieved through mesh number 300.	93
4.4	Particle size distribution curve of mixed oxide	
	PZT powder: a) sieved through mesh number 100 and	
	b) sieved through mesh number 300.	94
4.5	X-ray diffraction pattern of the peak (111) of	
	PZT powder annealed at different temperature	97
4.6	Variation of Fourier coefficient $I_{re}(t)$ with t of	
	PZT powder annealed at the temperatures of 400 °C,	
	600 °C, 800 °C, 1000 °C and 1200 °C.	98
-		

Figu	re	Page
4.7	Variation of fourier coefficient $I_{re}(t)$ with t of	
	PZT powder annealed at the temperatures of 500 °C,	
	700 °C, 900 °C and 1100 °C.	99
4.8	Particle size and microstrain of PZT powder as a	
	function of annealing temperatures.	100
4.9	Scanning electron micrograph of PZT powder	
	calcined at 400 °C.	102
4.10	Scanning electron micrograph of PZT powder	
	calcined at 500 °C.	102
4.11	Scanning electron micrograph of PZT powder	
	calcined at 600 °C.	103
4.12	Scanning electron micrograph of PZT powder	
	calcined at 700 °C.	103
4.13	Scanning electron micrograph of PZT powder	
	calcined at 800 °C.	104
4.14	Scanning electron micrograph of PZT powder	
	calcined at 900 °C.	104
4.15	Scanning electron micrograph of PZT powder	
	calcined at 1000 °C.	105

Figu	re	Page
		J -
4.16	Scanning electron micrograph of PZT powder	
	calcined at 1100 °C.	105
4.17	Scanning electron micrograph of PZT powder	
	calcined at 1200 °C.	106
4.18	Scanning electron micrograph of PZT powder	
	calcined at 1300 °C.	106
4.19	The density of conventional PE and 40/30 PZT	
	composites as a function of ceramic volume	
	Percentage.	110
4.20	The density ceramic of centrifuging resin and	
	40/30 PZT composites as a function of volume	
	percentage.	111
4.21	The density of centrifuging resin and mixed	
	oxides PZT powder composites as a function	
	of ceramic volume percentage.	112
4.22	Scanning electron micrographs of the composites	
	prepared by conventional method: a) 50 vol%,	
	b) 60 vol%.	114
4.23	Scanning electron micrographs of centrifuging the	
	PZT (from mixed oxides) and resin composites:	

Figu	re	Page
	a) 60 vol%, b) 65 vol%.	115
4.24	Scanning electron micrographs of centrifuging	
	the 40/30 PZT and resin composites: a) 60 vol%,	
	b) 65 vol%.	116
4.25	Scanning electron micrographs of PZT particles	
	in the composites: a) mixed oxides PZT,	
	b) 40/30 PZT.	117
4.26	The plot of dielectric constant as a function	
	of the frequency of composites prepared by	
	conventional method.	118
4.27	The plot of $tan\delta$ as a function of the frequency	
	of composites prepared by conventional method.	119
4.28	The plot of dielectric constant as a function of	
	the frequency of mixed oxide PZT and resin	
	composites prepared by centrifuge method.	120
4.29	The plot of $tan\delta$ as a function of the frequency	
	of mixed oxide PZT and resin composites prepared	
	by centrifuge method.	121
4.30	The plot of dielectric constant as a function of	
	the frequency of 40/30 PZT and resin composites	

Figure	Pag	је
prepared by centrifuge method	od. 12	22
4.31 The plot of $tan\delta$ as a function	ion of the frequency	
of 40/30 PZT and resin compo	osites prepared by	
centrifuge method.	12	23
4.32 The acoustic impedance (Z)	plotted against	
volume percentage of PZT pov	wder. 13	3

ABBREVIATIONS

A	area
С	capacitance
$C_{\mathbf{L}}$	longitudinal velocity
c/a	tetragonality
d	interplanar spacing
dh	hydrostatic charge coefficient
d _{ij}	piezoelectric charge coefficient
d ₃₃	piezoelectric charge coefficient
d_hg_h	hydrophone figure of merit
Ei	electric field
f_p	parallel resonance frequency
fs	series resonance frequency
f_{m}	frequency at minimum impedance
f_n	frequency at maximum impedance
f _r	resonance frequency
fa	antiresonance frequency
g _h	hydrostatic voltage coefficient
g _{ij}	piezoelectric voltage coefficient
9 33	piezoelectric voltage coefficient
K	dielectric constant

K Bulk modulus

 K_{α} radiation of K series

k_p planar coupling coefficient

kt thickness coupling coefficient

L column length

P_i electrical polarization

PZT Lead Zirconate Titanate

PVDF Polyvinylidene Fluoride

Qm mechanical quality factor

Re resistive component

R₁ resistance of the series branch

S reciprocal space vector

SEM Scanning Electron Microscopy

 ΔT time difference

 $tan\delta$ dissipation factor

thickness

Vol% volume percentage fraction

Wd dry weight

 W_{w} wet weight

Z acoustic impedance

 ϵ_r relative permittivity

 ϵ_0 permittivity of free space

 ϵ_{ij} mechanical strain

 σ_{j} mechanical stress

 σ_1, σ_2 electric conductivity

 θ Bragg's angle