TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract in English	√ iv
Abstract in Thai	vi
List of Tables	×
List of Illustrations	xi
List of Publications and Presentations	ΧV
Chapter 1 Introduction	1
Chapter 2 Principle of Rf Multicusp Ion Source	
2.1 Physics of Ion Source	5
2.2 Inductive Discharge	8
2.3 Multicusp Field	10
2.4 Beam Extraction	13
2.5 A 13.56 MHz Multicusp Ion Source	17
Chapter 3 Plasma Simulations and Diagnostics	
3.1 Plasma Simulation : XOOPIC	23
3.2 Optical Emission Spectroscopy (OES)	30
3.3 Rf Compensated Langmuir Probe	33
3.4 OES and L-probe Setup and Results	35
Chapter 4 Characteristics of Argon Beam	
4.1 Experimental Arrangement	44
4.2 3-electrode Extracting System	45

4.3 Scanning Wire Beam Profile Monitor	49
4.4 Beam Emittance Measurement	53
4.5 Beam Energy Spread Measurement	58
4.6 FIB System: Conceptual Design Study	62
Chapter 5 Conclusions	68
References	70
Appendices	
Appendix A The Child-Langmuir law	74
Appendix B	75
B1 Fortran code to calculate B-field in multicusp ion source	
B2 Data file for Argon plasma simulation: XOOPIC	
Appendix C The phase ellipse relation	79
Appendix D Papers by author	80
D1 Paper I: A 13.56 MHz multicusp ion source for high intensity Ar	
Beam, Rev. Sci. Instrum. 71(2) 1181 2000.	
D2 Paper II: Plasma emission in vacuum arc and RF-discharge	
plasma source, Rev. Sci. Instrum. 73(2) 754 2002.	
D3 Paper III: Characteristics of a 13.56 MHz radiofrequency	
driven multicusp ion source, submitted for publication in	
Plasma Sources Science and Technology.	
VITA	103

LIST OF TABLES

Table		Page
3.1	Data of transition probabilities: A, statistical weights: g and	43
	energies: E of upper levels	
4.1	Comparison of gas and ionization mean free path at	47
	various Argon pressures	
4.2	α ratio as functions of V_b and I_b from a 100 micron beam	63

LIST OF ILLUSTRATIONS

Figure		Page
2.1	Ionization, excitation and elastic scattering cross-sections for	7
	electrons in Argon gas	
2.2	The equivalent circuit of a plasma in the inductive discharge	8
2.3	Rf field induced by an antenna propagates through a plasma	9
	with skin depth δ_p	
2.4	Comparison of the calculated cusp field and field strength using	13
	MAGNUS code for Sm-Co ₅ and Nd-Fe-B magnets	
2.5	Schematic diagram of ion extraction from a plasma source	14
2.6	The Paschen curve of air dielectric strength range at varied	16
	pressure	
2.7	Rf-multicusp ion source developed for high-intensity Ar beam	17
	production operates at 13.56 MHz	
2.8	20 rows of Nd-Fe-B permanent magnets were installed around	18
	ion source chamber to produce multicusp field	
2.9	A 2 turns, 6 cm in diameter quartz antenna was installed on the	19
	back flange supplies rf power to the plasma inside the source	
	volume	
2.10	The matching network working at 13.56 MHz includes a 10:1	20
	transformer, a variable capacitor and an inductor in a shielded box	(
2.11	Measured radial B field strength of 0.18 T was found maximum	21
	at the source inner wall $(r = 0)$	•
2.12	Measured multicusp field for half circle at the source inner wall:	21

	starting between 1 st magnets pair and end between 10 th magnets	
	pair	
2.13	A sample of Argon plasma confinement result seen inside the	22
	source chamber: 50 watts rf power, 10 mTorr Argon pressure	
3.1	Schematic diagram of the simulation model with cylindrical shaped	26
	boundary 10 cm diam and 9 cm long. The z-axis is taken as	
	the symmetry axis	
3.2	XOOPIC simulation results in r-z space at 10 mTorr base pressure:	27
	(a) the calculated particles density against time; (b) the magnetic	
	field inside the source volume	
	(c) profile of the electron density (d) profile of the ion density;	28
	(e) electron distribution	
	(f) ion distribution; (g) T _e profiles against time. All data are taken at	29
	373 ns revolution time	
3.3	OES measurement setup using Ocean Optics S2000 spectrometer	33
3.4	Rf-compensated Langmuir probe schematic	35
3.5	Photo of a self-built rf-compensated Langmuir probe. The probe	35
	tip is set to 90 degree for radial profile measurement within	
	± 4.5 cm range	
3.6	OES and Langmuir probe measurements setup	37
3.7	a) OES spectrum of Argon plasma at 2 mTorr 200 watts rf power	37
	b) line intensity as a function of rf power at 8 mTorr Argon pressure	38
	c) line intensity as a function of argon gas pressure at 400 watts	38
	rf power	
3.8	Mode jump in N ₂ discharges as the discharge mechanism	40
	changes from canacitive to inductive: at 8 mTorr	

3.9	A typical probe I-V curve from Argon plasma at P _{rf} = 200 W	41
3.10	Density profile in the radial direction 1 cm from the antenna	41
3.11	Decreasing of electron temperature with log of pressure	43
	measured by Langmuir probe (top) and OES (bottom)	
4.1	System setup consisted of ion source, experiment chamber,	44
	and window	
4.2	Samples of KOBRA simulation of 9 keV Ar beam from a 3 electrode	46
	extraction system at different values of perveance a) 0.3Po,b) 0.45P	o
	and c) $1.0P_0$. The grids were biased with 9, -1 and 0 kV, respectively	У .
4.3	Pressure dependencies of the extracted Ar beam from this setup	47
4.4	Ar current extracted from the ion source at different rf power at	49
	a base pressure of 8 mTorr	
4.5	Show 50 micron W wire as a beam sensor on scanning wire BPM	50
4.6	Plateau of the bias voltages plot as a function of Ar beam energy	51
4.7	A measured beam profile as a function of the extracting voltage at	52
	3 cm from the ground electrode using the scanning wire BPM	
4.8	The beam profile of the 12 keV focused Ar beam at different	53
	locations	
4.9	A phase ellipse of a beam in phase space	54
4.10	Emittance measurement setup using quadrupole scan method	56
	a) schematic diagram b) a quadrupole magnet c) a 16x16	
	multiwire BPM	
4.11	A plot of polynomial fitting between quadrupole current vs beam	57
	width	
4.12	Phase-space diagram of 9 keV Ar beam results the rms beam	58
	emittance of 32 ± 4 mm mrad	

4.13	The RFA developed for beam energy spread measurement	59
	a) schematic diagram b) actual RFA with a ground shield	
4.14	Energy spread of Ar beam at 0.5 to 4 keV energy	61
4.15	Effects of with and without 0.1 μF bypassing capacitor on	61
	energy spread	
4.16	Modeling of the 100 micron beam extraction with its emittance.	64
	Ar beam current is extracted with 1 kV for the case of a) 1 μA,	
-	b) 10 μA, c) 100 μA and d) 1000 μA	
4.17	Effects of different lens voltage on the Einzel lens with 6 mm	66
	aperture a) 0.5 kV b) 0.8 kV and c) 1 kV	
4.18	Beam emittance of a 1 keV Ar beam after the 0.8 kV biased	67
	Einzel lens	

LIST OF PUBLICATIONS AND PRESENTATIONS

Publications

- D. Boonyawan, N. Chirapatpimol, N. Sanguansak, and T. Vilaithong 2000. A 13.56 MHz multicusp ion source for high intensity Ar beam, Rev. Sci. Instrum. 71(2) 1181.
- D. Boonyawan, S. Davidov, B. Yotsombat, N. Chirapatpimol, and T. Vilaithong
 2002 Plasma emission in vacuum arc and RF-discharge plasma source,
 Rev. Sci. Instrum. 73(2) 754.
- 3. <u>D. Boonyawan</u>, N. Chirapatpimol, and T. Vilaithong: Characteristics of a 13.56 MHz radiofrequency driven multicusp ion source, submitted for publication in *Plasma Sources Science and Technology*.

Presentations

- D. Korzec, D. Boonyawan, J. Engemann, Microwave slot antenna type ultraviolet light source for fluid treatment, The 8th International Symposium on the Science and Technology of Light Sources LS-8, Greifswald, Germany; 30. Aug. - 3. Sept. 1998.
- D. Boonyawan, N. Chirapatpimol, and T. Vilaithong, A 13.56 MHz multicusp ion source for high intensity Ar beam, The 8th International Conference on Ion Sources, Kyoto, Japan, 6-10 Sep 1999.
- D. Boonyawan, S. Davidov, B. Yotsombat, N. Chirapatpimol, and T. Vilaithong, Plasma emission in vacuum arc and RF-discharge plasma source, The 9th International Conference on Ion Sources, Oakland CA, USA, 3-7 Sep 2001.

4. <u>D. Boonyawan</u>, N. Tondee, P. Chaiwan, S. Amkaew, M. Rhodes and T.Vilaithong, *Beam diagnostics of Radiofrequency driven multicusp ion source*, International Workshop on Particle Beams & Plasma Interaction on Materials, Chiang Mai, THAILAND, 31 Jan-1 Feb 2002.