" CHAPTER 2
PRINCIPLE AND THEORY

2.1 The origins of radon

Naturally occurring radioactivity occurs throughout the Earth’s
crust. Some of these radioactive nuclides decay into stable elements and
others decay into another radioactive nuclide. Uranium has two
radioactive nuclides, **U and U, that decay into other radioactive
nuclides and thorium has one such radioactive nuclide, **Th., The
immediate disposition of an atom created in a radioactive series depends
on physical and chemical properties of the element and the surrounding
soil or rocks. These elements vary greatly in solubility, depending on
ambient physical conditions, and may go into solution or be absorbed
onto organic particles or clay minerals. Uranium, radium, and radon are
the most movable, lead and bismuth are only moderately movable, while
thorium and polonium remain relatively immobile,

One of the most abundant sources of naturally occurring
radioactivity is the series that begins with 28U, Figure 2.1 shows this
series. The first 14 members in this series collectively emit gamma, beta,
and alpha radiation. Because of the arrangement of half-life and chemical
properties, the concentration of radioactivity of the early members of the
series is proportional to the concentration of 2*U in the Earth.

An important deviation happens roughly midway through the %*%U
series: *°Ra decays by alpha emission and creéates 2’Rn. In contrast
with other members of the series, which are solids, radon is a chemically

inert noble gas and can migrate in the environment (Commiittee on Risk
Assessment, 1999),
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Figure 2.1 Decay scheme for naturally occurring 23U chain.

The other radiocactive decay series is the *?Th series. In this series,
2%Ra decays by alpha emission and creates 22°Rn. ?°Rn is a short-life

inert noble gas and all other members of the series are solids. Figure 2.2
shows the 2**Th decay series.
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Figure 2.2 Decay scheme for naturally occurring 22Th chain,
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2.2 Migration of radon in overburden

Uranium in soils and rocks is the source of most radon. The decay
series, beginning with *®U, is a major source of natural radiation
exposure. Local high levels of uranium are due mainly to the underlying
rock type and its mineral composition. A significant uranium daughter is
radium, *°Ra, which has a half-life of 1,600 years. Radium’s daughter is
radon, “’Rn, and it has a half-life of 3.82 days.

Because radon is a gas, it has much greater mobility than uranium
and radium, which are fixed in the solid matter of rocks and soils. Radon
can more easily leave rocks and soils by escaping into fractures and
openings in rocks and into the pore spaces between grains of soil.
Migration of radon in soil gas is controlled by two processes. These
processes are molecular diffusion and fluid flow. The law of radioactive
disintegration is simple and unvarying. The calculation of the amount of
radon generated by a given amount of 2%U is easy provided the
radioactive series is in equilibrium at least to the level of radon. However,
analysis of the escape of gas from its source and its movement through
the overburden is more complex. This depends on a large number of
variables, such as the emanation coefficient of the source, the diffusion
coefficient of the overburden, and the geometrical configuration of the
whole system,

In the case of radioactive series in equilibrium, it can be shown that
/llNl =22N2="'= /InNn 2.1)

where 4, is the decay constant of the isotope » of the series and N, is the
number of atoms of isotope #. This relationship shows that 1 gram of
natural uranium is in equilibrium with 3.713 x 107 curies, or 3.713 x 10°
picocuries, of radon. However, only a fraction of the radon so generated

can escape from the generating medium and enter the overburden
(Kanaree, 1998).
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2.2.1. Radon diffusion equations

For homogeneous half space, the two equations of Fick’s law
(Schroeder and others, 1996) describe radon diffusion. For the vertical z-
axis, Fick’s first law equation is
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where, ¢ is the particle current density (flux, Bq.m™.s™).
D is the diffusion coefficient of the medium (m’s™).
C. is the radon concentration in one unit volume of soil at depth
z (Bqm™).
Fick’s second law of radon diffusion equation is
eoC
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where, A is the decay constant of radon = 2.11 x 10 5, and P.is the
radon production rate at depth z (Bq.m>s™h,

From equations (2.2) and (2.3), the radon diffusion equation can be
written as

aC o*C
Z=p 2z _2C +P _
ot oz zoz 24)

For steady state condition (%% =0) and constant radon production

rate (P, = F), the solution of equation (2.4) is:

C, = %[1 - exp(“z‘%] 2.5)
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2.2.2 Radon diffusion plus fluid flow equation

For homogeneous half space having a steady state condition and a
constant radon production rate (F,), the effect of vertical movement of

diffusing radioactive gas on the radon concentration at depth C, is:

2C.  dC
D&% % e Lp o 2.6
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where, v is velocity of upward fluid flow in m.s”. The solution of
equation (2.6) is:

C (2.7)

B |: (—v/ZD—\/v2/4D2+A/D)z}
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2.3 Theory of soil-gas permeability measurement

Measurements of soil-gas permeability have taken on added
significance as a result of increased efforts to determine the entry rates of
radon into buildings and to develop methods of mapping the radon
potential of soils. Soil-gas permeability was measured by placing a
perforated probe in the ground and then measuring the relationship
between an applied pressure and the resulting rate of gas flow through the
probe. The permeability probe was operated by pumping air into the
formation under constant pressure. The data will be analyzed based on a
mathematical model for the flow/pressure relationship. The geometry of
the measurement probe is important in that it determines the numerical
value to be assigned to the geometrical shape factor. This geometrical
shape factor consists of the product of a dimensionless geometrical factor,
which depends on shape of the probe, and a length that is characteristic of
the size of the probe.

To develop a theory, air flow from a buried probe to the surface
must be considered, The soil is assumed to be homogeneous and isotropic
and a steady state is considered. Furthermore, the air is assumed to be
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incompressible, meaning that pressure differences are very much smaller
than atmospheric pressure. Under these assumptions the air flow is
proportional to the pressure difference between the probe and the surface
(Damkjaer and Korsbech, 1992). This relationship can be represented by:

0=5%

L AP (2.8)
7;

where, = Volumetric flow rate (m’ .s)

Q

§ = geometric shape factor (m.)

k = permeability (m%)

# = dynamic viscosity of the gas (Pa.s)
AP

= applied pressure difference (Pa)

Shape factors can be determined for various geometrical probes
(Moseley et al., 1996). The shape factor for a sphere buried in a semi-
infinite slab of soil was given by Nazaroff and Sextro (1989) and by van
der Graaf and de Meijer (1992). The equation for determining shape
factor of a sphere is

8z hr
S= 29
2h—r 29)
where, § = shape factor (m) for the spherical cavity.
h = depth (m) of the sphere below the soil surface.
r = inner radius (m) of the spherical cavity,

The equation of Hahne and Grigull (1975) to determine the shape
factor for porous cylinders buried horizontally to the surface is

2L
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where, = shape factor (m) for the porous cylinder.

length (m) of the cylinder.
= depth (m) below the surface.

= inner radius (m) of the porous cylinder.
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The Hahne and Grigull (1975) shape factor equation for a porous
cylinder oriented perpendicular to the surface is
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where, the symbols are the same as for equation (2.11)

The shape factor equation for an ellipsoid with its major axis

parallel to the surface was given by van der Graaf and de Meijer (1992)
as
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Where, ¢ = half the distance (m) between the foci of the ellipsoid,
a = semi-major axis (m) of the ellipsoid.
h = depth (m) below the surface.

The shape factor equation for an ellipsoid with its major axis
perpendicular to the surface was given by Damkjaer and Korsbech (1992)
and by van der Graaf and de Meijer (1992) as
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where, the parameters are the same as for equation (2.12).





